491 research outputs found
Solitons in nonlocal nonlinear media: exact results
We investigate the propagation of one-dimensional bright and dark spatial
solitons in a nonlocal Kerr-like media, in which the nonlocality is of general
form. We find an exact analytical solution to the nonlinear propagation
equation in the case of weak nonlocality. We study the properties of these
solitons and show their stability.Comment: 9 figures, submitted to Phys. Rev.
Mid- and Late-Life Diabetes in Relation to the Risk of Dementia: A Population-Based Twin Study
OBJECTIVE—We aimed to verify the association between diabetes and the risk of dementia, Alzheimer's disease, and vascular dementia in twins and to explore whether genetic and early-life environmental factors could contribute to this association
Advances in the Surface Passivation of Silicon Solar Cells
AbstractThe surface passivation properties of aluminium oxide (Al2O3) on crystalline Si are compared with the traditional passivation system of silicon nitride (SiNx). It is shown that Al2O3 has fundamental advantages over SiNx when applied to the rear of p-type silicon solar cells as well as to the p+ emitter of n-type silicon solar cells. Special emphasis is paid to the transfer of Al2O3 into industrial solar cell production. We compare different Al2O3 deposition techniques suitable for mass production such as ultrafast spatial atomic layer deposition, inline plasma-enhanced chemical vapour deposition and reactive sputtering. Finally, we review the most recent cell results with Al2O3 passivation and give a brief outlook on the future prospects of Al2O3 in silicon solar cell production
Racial/Ethnic Disparities in Alzheimer’s Disease Risk: Role of Exposure to Ambient Fine Particles
Background
Whether racial/ethnic disparities in Alzheimer’s disease (AD) risk may be explained by ambient fine particles (PM2.5) has not been studied.
Methods
We conducted a prospective, population-based study on a cohort of Black (n=481) and White (n=6004) older women (aged 65-79) without dementia at enrollment (1995-98). Cox models accounting for competing risk were used to estimate the hazard ratio (HR) for racial/ethnic disparities in AD (1996-2010) defined by DSM-IV and the association with time-varying annual average PM2.5 (1999-2010) estimated by spatiotemporal model.
Results
Over an average follow-up of 8.3 (±3.5) years with 158 incident cases (21 in Black women), the racial disparities in AD risk (range of adjusted HRBlack women = 1.85-2.41) observed in various models could not be explained by geographic region, age, socioeconomic characteristics, lifestyle factors, cardiovascular risk factors, and hormone therapy assignment. Estimated PM2.5 exposure was higher in Black (14.38±2.21 µg/m 3) than in White (12.55±2.76 µg/m 3) women, and further adjustment for the association between PM2.5 and AD (adjusted HRPM2.5 = 1.18-1.28) slightly reduced the racial disparities by 2-6% (HRBlack women = 1.81-2.26). The observed association between PM2.5 and AD risk was ~2 times greater in Black (HRPM2.5 = 2.10-2.60) than in White (HRPM2.5 = 1.07-1.15) women (range of interaction Ps: Conclusions
PM2.5 may contribute to racial/ethnic disparities in AD risk and its associated increase in AD risk was stronger amongst Black women
High School Quality is Associated with Cognition 58 Years Later
We leveraged a unique school-based longitudinal cohort—the Project Talent Aging Study—to examine whether attending higher quality schools is associated with cognitive performance among older adults in the United States (mean age = 74.8). Participants (n = 2,289) completed telephone neurocognitive testing. Six indicators of high school quality, reported by principals at the time of schooling, were predictors of respondents’ cognitive function 58 years later. To account for school-clustering, multilevel linear and logistic models were applied. We found that attending schools with a higher number of teachers with graduate training was the clearest predictor of later-life cognition, and school quality mattered especially for language abilities. Importantly, Black respondents (n = 239; 10.5 percentage) were disproportionately exposed to low quality high schools. Therefore, increased investment in schools, especially those that serve Black children, could be a powerful strategy to improve later life cognitive health among older adults in the United States
Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media
We present an overview of recent advances in the understanding of optical
beams in nonlinear media with a spatially nonlocal nonlinear response. We
discuss the impact of nonlocality on the modulational instability of plane
waves, the collapse of finite-size beams, and the formation and interaction of
spatial solitons.Comment: Review article, will be published in Journal of Optics B, special
issue on Optical Solitons, 6 figure
Enhancement of individual and community competence: The older adult as community worker
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44012/1/10464_2004_Article_BF00896496.pd
Ultrashort filaments of light in weakly-ionized, optically-transparent media
Modern laser sources nowadays deliver ultrashort light pulses reaching few
cycles in duration, high energies beyond the Joule level and peak powers
exceeding several terawatt (TW). When such pulses propagate through
optically-transparent media, they first self-focus in space and grow in
intensity, until they generate a tenuous plasma by photo-ionization. For free
electron densities and beam intensities below their breakdown limits, these
pulses evolve as self-guided objects, resulting from successive equilibria
between the Kerr focusing process, the chromatic dispersion of the medium, and
the defocusing action of the electron plasma. Discovered one decade ago, this
self-channeling mechanism reveals a new physics, widely extending the frontiers
of nonlinear optics. Implications include long-distance propagation of TW beams
in the atmosphere, supercontinuum emission, pulse shortening as well as
high-order harmonic generation. This review presents the landmarks of the
10-odd-year progress in this field. Particular emphasis is laid to the
theoretical modeling of the propagation equations, whose physical ingredients
are discussed from numerical simulations. Differences between femtosecond
pulses propagating in gaseous or condensed materials are underlined. Attention
is also paid to the multifilamentation instability of broad, powerful beams,
breaking up the energy distribution into small-scale cells along the optical
path. The robustness of the resulting filaments in adverse weathers, their
large conical emission exploited for multipollutant remote sensing, nonlinear
spectroscopy, and the possibility to guide electric discharges in air are
finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure
- …