19 research outputs found

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on eighteen research projects.Defense Advanced Research Projects Agency/MIT Lincoln Laboratory Contract MDA972-92-J-1038Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS 94-23737U.S. Air Force - Office of Scientific Research Contract F49620-95-1-0221U.S. Navy - Office of Naval Research Grant N00014-95-1-0715MIT Center for Material Science and EngineeringNational Center for Integrated Photonics Technology Contract DMR 94-00334National Center for Integrated Photonics TechnologyU.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-1-0717National Institutes of Health Grant 9-R01-EY11289MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-25ENEC

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on twenty research projects.Charles S. Draper Laboratories Contract DL-H-467138Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091MIT Lincoln LaboratoryNational Science Foundation Grant ECS 90-12787Fujitsu LaboratoriesNational Center for Integrated PhotonicsHoneywell Technology CenterU.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-1-0717U.S. Navy - Office of Naval Research (MFEL) Grant N00014-91-J-1956National Institutes of Health Grant NIH-5-R01-GM35459-09U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0301MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-25ENEC

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∼10 μm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    Confocal reflectance imaging of head and neck surgical specimens. A comparison with histologic analysis.

    No full text
    BACKGROUND: Confocal reflectance microscopy (CRM) is an optical method of imaging tissue noninvasively without the need for fixation, sectioning, and staining as in standard histopathologic analysis. Image contrast is determined by natural differences in refractive indices of organelles and other subcellular structures within the tissues. Gray-scale images are displayed in real time on a video monitor and represent horizontal (en face) optical sections through the tissue. We hypothesized that CRM is capable of discerning histologic characteristics of different tissues in the head and neck. OBJECTIVES: To examine the microscopic anatomy of freshly excised head and neck surgical specimens en bloc using CRM and to compare the findings with those generated by conventional histologic analysis. DESIGN: This was a pilot observational cohort study. Bone, muscle, nerve, thyroid, parotid, and ethmoid mucosa from human surgical specimens were imaged immediately after excision. Confocal images were compared with corresponding routine paraffin-embedded, hematoxylin-eosin-stained sections obtained from the same tissue. RESULTS: Characteristic histologic features of various tissues and cell types were readily discernible by CRM and correlated well with permanent sections. However, in all tissues examined, there was less microscopic detail visible in the CRM images than was appreciated in paraffin-embedded histologic sections. CONCLUSIONS: The CRM images revealed cytologic features without the artifacts of histologic processing and thus may have the potential for use as an adjunct to frozen-section analysis in intraoperative consultation

    Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    No full text
    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 mu m, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing AgreementNational Institute of Health/Fogarty International Center [R21TW010221]; National Cancer Institute [P30CA008748]Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Differentiation of Early from Advanced Coronary Atherosclerotic Lesions: Systematic Comparison of CT, Intravascular US, and Optical Frequency Domain Imaging with Histopathologic Examination in ex Vivo Human Hearts

    Full text link
    Purpose:To establish an ex vivo experimental setup for imaging coronary atherosclerosis with coronary computed tomographic (CT) angiography, intravascular ultrasonography (US), and optical frequency domain imaging (OFDI) and to investigate their ability to help differentiate early from advanced coronary plaques.Materials and Methods:All procedures were performed in accordance with local and federal regulations and the Declaration of Helsinki. Approval of the local Ethics Committee was obtained. Overall, 379 histologic cuts from nine coronary arteries from three donor hearts were acquired, coregistered among modalities, and assessed for the presence and composition of atherosclerotic plaque. To assess the discriminatory capacity of the different modalities in the detection of advanced lesions, c statistic analysis was used. Interobserver agreement was assessed with the Cohen κ statistic.Results:Cross sections without plaque at coronary CT angiography and with fibrous plaque at OFDI almost never showed advanced lesions at histopathologic examination (odds ratio [OR]: 0.02 and 0.06, respectively; both P < .0001), while mixed plaque at coronary CT angiography, calcified plaque at intravascular US, and lipid-rich plaque at OFDI were associated with advanced lesions (OR: 2.49, P = .0003; OR: 2.60, P = .002; and OR: 31.2, P < .0001, respectively). OFDI had higher accuracy for discriminating early from advanced lesions than intravascular US and coronary CT angiography (area under the receiver operating characteristic curve: 0.858 [95% confidence interval {CI}: 0.802, 0.913], 0.631 [95% CI: 0.554, 0.709], and 0.679 [95% CI: 0.618, 0.740]; respectively, P < .0001). Interobserver agreement was excellent for OFDI and coronary CT angiography (κ = 0.87 and 0.85, respectively) and was good for intravascular US (κ = 0.66).Conclusion:Systematic and standardized comparison between invasive and noninvasive modalities for coronary plaque characterization in ex vivo specimens demonstrated that coronary CT angiography and intravascular US are reasonably associated with plaque composition and lesion grading according to histopathologic findings, while OFDI was strongly associated. These data may help to develop initial concepts of sequential imaging strategies to identify patients with advanced coronary plaques.© RSNA, 2012Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12111891/-/DC1

    Prospective development and validation of a volumetric laser endomicroscopy computer algorithm for detection of Barrett’s neoplasia

    No full text
    Background and Aims Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett’s esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may aid in the process of VLE image interpretation. Our aim was to train and validate a CAD algorithm for VLE-based detection of BE neoplasia. Methods The multicenter, VLE PREDICT study, prospectively enrolled 47 BE patients. In total, 229 nondysplastic BE, and 89 neoplastic (HGD/EAC) targets were laser marked under VLE guidance and subsequently biopsied for histological diagnosis. Deep convolutional neural networks were used to construct a CAD algorithm for differentiation between nondysplastic and neoplastic BE tissue. The CAD algorithm was trained on a set consisting of the first 22 patients (134 NDBE and 38 neoplastic targets) and validated on a separate test set of patients 23 to 47 (95 NDBE and 51 neoplastic targets). Finally, algorithm performance was benchmarked against the performance of 10 VLE experts. Results Using the Training set to construct the algorithm resulted in an accuracy of 92%, sensitivity of 95% and specificity of 92%. When performance was assessed on the Test set, accuracy, sensitivity, and specificity were 85%, 91%, and 82%, respectively. The algorithm outperformed all 10 VLE experts, who demonstrated an overall accuracy of 77%, sensitivity of 70%, and specificity of 81%. Conclusions We developed, validated, and benchmarked a VLE CAD algorithm for detection of BE neoplasia using prospectively collected and biopsy-correlated VLE targets. The algorithm detected neoplasia with high accuracy and outperformed 10 VLE experts
    corecore