186 research outputs found

    Using Wavelets to reject background in Dark Matter experiments

    Full text link
    A method based on wavelet techniques has been developed and applied to background rejection in the data of the IGEX dark matter experiment. The method is presented and described in some detail to show how it efficiently rejects events coming from noise and microphonism through a mathematical inspection of their recorded pulse shape. The result of the application of the method to the last data of IGEX is presented.Comment: 14 pages, 8 figures. Submitted to Astrop. Phy

    TREX-DM: a low background Micromegas-based TPC for low-mass WIMP detection

    Get PDF
    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ∼\sim0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detector's response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.Comment: Proceedings of the XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015), 7-11 September 2015, Torino, Ital

    Neutron background at the Canfranc Underground Laboratory and its contribution to the IGEX-DM dark matter experiment

    Full text link
    A quantitative study of the neutron environment in the Canfranc Underground Laboratory has been performed. The analysis is based on a complete set of simulations and, particularly, it is focused on the IGEX-DM dark matter experiment. The simulations are compared to the IGEX-DM low energy data obtained with different shielding conditions. The results of the study allow us to conclude, with respect to the IGEX-DM background, that the main neutron population, coming from radioactivity from the surrounding rock, is practically eliminated after the implementation of a suitable neutron shielding. The remaining neutron background (muon-induced neutrons in the shielding and in the rock) is substantially below the present background level thanks to the muon veto system. In addition, the present analysis gives us a further insight on the effect of neutrons in other current and future experiments at the Canfranc Underground Laboratory. The comparison of simulations with the body of data available has allowed to set the flux of neutrons from radioactivity of the Canfranc rock, (3.82 +- 0.44) x 10^{-6} cm^{-2} s^{-1}, as well as the flux of muon-induced neutrons in the rock, (1.73 +- 0.22(stat) \+- 0.69(syst)) x 10^{-9} cm^{-2} s^{-1}, or the rate of neutron production by muons in the lead shielding, (4.8 +- 0.6 (stat) +- 1.9 (syst)) x 10^{-9} cm^{-3} s^{-1}.Comment: 17 pages, 8 figures, elsart document class; final version to appear in Astroparticle Physic

    Status of the ANAIS Dark Matter Project at the Canfranc Underground Laboratory

    Full text link
    The ANAIS experiment aims at the confirmation of the DAMA/LIBRA signal. A detailed analysis of two NaI(Tl) crystals of 12.5 kg each grown by Alpha Spectra will be shown: effective threshold at 1 keVee is at reach thanks to outstanding light collection and robust PMT noise filtering protocols and the measured background is well understood down to 3 keVee, having quantified K, U and Th content and cosmogenic activation in the crystals. A new detector was installed in Canfranc in March 2015 together with the two previous modules and preliminary characterization results will be presented. Finally, the status and expected sensitivity of the full experiment with 112 kg will be reviewed.Comment: Contributed to the 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 22 to 26, 201
    • …
    corecore