94,890 research outputs found

    Entropy Production in Relativistic Binary Mixtures

    Full text link
    In this paper we calculate the entropy production of a relativistic binary mixture of inert dilute gases using kinetic theory. For this purpose we use the covariant form of Boltzmann's equation which, when suitably transformed, yields a formal expression for such quantity. Its physical meaning is extracted when the distribution function is expanded in the gradients using the well-known Chapman-Enskog method. Retaining the terms to first order, consistently with Linear Irreversible Thermodynamics we show that indeed, the entropy production can be expressed as a bilinear form of products between the fluxes and their corresponding forces. The implications of this result are thoroughly discussed

    A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    Full text link
    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating dense fluid flows at molecular scales. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm; it is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to yield a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We apply a stochastic Enskog kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.Comment: 30 pages, revision adding some clarifications and a new figure. See also arXiv:0803.035
    • …
    corecore