11,870 research outputs found
Efficient memory management in VOD disk array servers usingPer-Storage-Device buffering
We present a buffering technique that reduces video-on-demand server memory requirements in more than one order of magnitude. This technique, Per-Storage-Device Buffering (PSDB), is based on the allocation of a fixed number of buffers per storage device, as opposed to existing solutions based on per-stream buffering allocation. The combination of this technique with disk array servers is studied in detail, as well as the influence of Variable Bit Streams. We also present an interleaved data placement strategy, Constant Time Length Declustering, that results in optimal performance in the service of VBR streams. PSDB is evaluated by extensive simulation of a disk array server model that incorporates a simulation based admission test.This research was supported in part by the National R&D Program of Spain, Project Number TIC97-0438.Publicad
Implementation of a Hardware/Software Platform for Real-Timedata-Intensive Applications in Hazardous Environments
Real-Time Technology and Applications Symposium. Brookline, MA, USA, 10-12 Oct. 1996In real-time data-intensive applications, the simultaneous achievement of the required performance and determinism is a difficult issue to address, mainly due to the time needed to perform I/O operations, which is more significant than the CPU processing time. Additional features need to be considered if these applications are intended to perform in hostile environments. In this paper, we address the implementation of a hardware/software platform designed to acquire, transfer, process and store massive amounts of information at sustained rates of several MBytes/sec, capable of supporting real-time applications with stringent throughput requirements under hazardous environmental conditions. A real-world system devoted to the inspection of nuclear power plants is presented as an illustrative examplePublicad
A comprehensive approach in performance evaluation for modernreal-time operating systems
In real-time computing the accurate characterization of the performance and determinism that a particular real-time operating system/hardware combination can provide for real-time applications is essential. This issue is not properly addressed by existing performance metrics mainly due to the lack of completeness and generalization. In this paper we present a set of comprehensive, easy-to-implement and useful metrics covering three basic real-time operating system features: response to external events, intertask synchronization and resource sharing, and intertask data transferring. The evaluation of real-time operating systems using a set of fine-grained metrics is fundamental to guarantee that we can reach the required determinism in real-world applications.Publicad
Computational analysis of projectile impact resistance on aluminium (a356) curvilinear surface reinforced with carbon nanotubes (cnts) for applications in systems of protection
Computational tests for ballistic impact energy absorption were developed on A356/CNTs composite material with the goal of estimating the improvement of the materialâs mechanical properties by the contribution of the CNTs [1]. For the implementation of computational tests on the material exposed to projectile impact, A356/CNTs was configured by means of generalized Hookeâs model for anisotropic materials [1] and Johnson-Cookâs model was used to determine material failure and propagation of energy [2]. A curvilinear surface (semi-spheres on a plaque) with an area of 23x23 cm and thickness of 12 mm was elaborated to represent the composite material. The impact on surface was done with a 9 mm projectile and the surface was developed with 4.5 mm radium semi-spheres. It was used a 0.3% of nanotube insertions on the composite total volume. The results indicated the plaque stopped the impact without drilling. Incidence of damage to wearer, as well as possibility of composite material improvement and the diffusion/dispersion analysis on the curvilinear surface was also done
Hypoxic Cell Waves around Necrotic Cores in Glioblastoma: A Biomathematical Model and its Therapeutic Implications
Glioblastoma is a rapidly evolving high-grade astrocytoma that is
distinguished pathologically from lower grade gliomas by the presence of
necrosis and microvascular hiperplasia. Necrotic areas are typically surrounded
by hypercellular regions known as "pseudopalisades" originated by local tumor
vessel occlusions that induce collective cellular migration events. This leads
to the formation of waves of tumor cells actively migrating away from central
hypoxia. We present a mathematical model that incorporates the interplay among
two tumor cell phenotypes, a necrotic core and the oxygen distribution. Our
simulations reveal the formation of a traveling wave of tumor cells that
reproduces the observed histologic patterns of pseudopalisades. Additional
simulations of the model equations show that preventing the collapse of tumor
microvessels leads to slower glioma invasion, a fact that might be exploited
for therapeutic purposes.Comment: 29 pages, 9 figure
A hybrid approach for directory facilitators in a FIPA multi-agent platform
In this work we present a research line that focus on the design and implementation of a Directory Facilitator for a FIPA multi-agent platform. We will introduce three different approaches: a centralized version, a distributed one, and a hybrid solution. As we will explain below, the hybrid approach will have several advantages and it will be our choice for future implementations.Eje: Inteligencia artificialRed de Universidades con Carreras en InformĂĄtica (RedUNCI
- âŠ