63,893 research outputs found
H∞ fuzzy control for systems with repeated scalar nonlinearities and random packet losses
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the H∞ fuzzy control problem for a class of systems with repeated scalar nonlinearities and random packet losses. A modified Takagi-Sugeno (T-S) fuzzy model is proposed in which the consequent parts are composed of a set of discrete-time state equations containing a repeated scalar nonlinearity. Such a model can describe some well-known nonlinear systems such as recurrent neural networks. The measurement transmission between the plant and controller is assumed to be imperfect and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to represent the phenomenon of random packet losses. Attention is focused on the analysis and design of H∞ fuzzy controllers with the same repeated scalar nonlinearities such that the closed-loop T-S fuzzy control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers, and the cone complementarity linearization procedure is employed to cast the controller design problem into a sequential minimization one subject to linear matrix inequalities, which can be readily solved by using standard numerical software. Two examples are given to illustrate the effectiveness of the proposed design method
Recommended from our members
Sliding mode and shaped input vibration control of flexible systems
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the vibration reduction problem is investigated for a flexible spacecraft during attitude maneuvering. A new control strategy is proposed, which integrates both the command input shaping and the sliding mode output feedback control (SMOFC) techniques. Specifically, the input shaper is designed for the reference model and implemented outside of the feedback loop in order to achieve the exact elimination of the residual vibration by modifying the existing command. The feedback controller, on the other hand, is designed based on the SMOFC such that the closed-loop system behaves like the reference model with input shaper, where the residual vibrations are eliminated in the presence of parametric uncertainties and external disturbances. An attractive feature of this SMOFC algorithm is that the parametric uncertainties or external disturbances of the system do not need to satisfy the so-called matching conditions or invariance conditions provided that certain bounds are known. In addition, a smoothed hyperbolic tangent function is introduced to eliminate the chattering phenomenon. Compared with the conventional methods, the proposed scheme guarantees not only the stability of the closed-loop system, but also the good performance as well as the robustness. Simulation results for the spacecraft model show that the precise attitudes control and vibration suppression are successfully achieved
Fault detection for markovian jump systems with sensor saturations and randomly varying nonlinearities
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEE.This paper addresses the fault detection problem for discrete-time Markovian jump systems with incomplete knowledge of transition probabilities, randomly varying nonlinearities and sensor saturations. For the Markovian mode jumping, the transition probability matrix is allowed to have partially unknown entries, while the cases with completely known or completely unknown transition probabilities are also investigated as two special cases. The randomly varying nonlinearities and the sensor saturations are introduced to reflect the limited capacity of the communication networks resulting from the noisy environment, probabilistic communication failures, measurements of limited amplitudes, etc. Two energy norm indices are used for the fault detection problem in order to account for, respectively, the restraint of disturbance and the sensitivity of faults. The purpose of the problem addressed is to design an optimized fault detection filter such that 1) the fault detection dynamics is stochastically stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H∞-norm. The characterization of the gains of the desired fault detection filters is derived in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness of the fault detection filtering scheme proposed in this paper.This work was supported in part by the National 973 Project under Grant 2009CB320600, the National Natural Science Foundation of China under Grants 61028008, 61134009, 60825303, 90916005 and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
Recommended from our members
Observer-based H∞ control for systems with repeated scalar nonlinearities and multiple packet losses
This paper is concerned with the H∞ control problem for a class of systems with repeated scalar nonlinearities and multiple missing measurements. The nonlinear system is described by a discrete-time state equation involving a repeated scalar nonlinearity, which typically appears in recurrent neural networks. The measurement missing phenomenon is assumed to occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator, where the missing probability for each sensor/actuator is governed by an individual random variable satisfying a certain probabilistic distribution in the interval [0 1]. Attention is focused on the analysis and design of an observer-based feedback controller such that the closed-loop control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers. It is shown that the controller design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. Three examples are provided to illustrate the effectiveness of the developed theoretical result
Robust H∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust H∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, National Natural Science Foundation of China under Grant 60825303, 60834003, 973 Project under Grant 2009CB320600, Fok Ying Tung Education Foundation under Grant 111064, and the Youth Science Fund of Heilongjiang Province under Grant QC2009C63
On the sine-Gordon--Thirring equivalence in the presence of a boundary
In this paper, the relationship between the sine-Gordon model with an
integrable boundary condition and the Thirring model with boundary is discussed
and the reflection -matrix for the massive Thirring model, which is related
to the physical boundary parameters of the sine-Gordon model, is given. The
relationship between the the boundary parameters and the two formal parameters
appearing in the work of Ghoshal and Zamolodchikov is discussed.Comment: 14 pages, Latex, to be published in Int. J. Mod. Phys. A. Two
references adde
Combining Models of Approximation with Partial Learning
In Gold's framework of inductive inference, the model of partial learning
requires the learner to output exactly one correct index for the target object
and only the target object infinitely often. Since infinitely many of the
learner's hypotheses may be incorrect, it is not obvious whether a partial
learner can be modifed to "approximate" the target object.
Fulk and Jain (Approximate inference and scientific method. Information and
Computation 114(2):179--191, 1994) introduced a model of approximate learning
of recursive functions. The present work extends their research and solves an
open problem of Fulk and Jain by showing that there is a learner which
approximates and partially identifies every recursive function by outputting a
sequence of hypotheses which, in addition, are also almost all finite variants
of the target function.
The subsequent study is dedicated to the question how these findings
generalise to the learning of r.e. languages from positive data. Here three
variants of approximate learning will be introduced and investigated with
respect to the question whether they can be combined with partial learning.
Following the line of Fulk and Jain's research, further investigations provide
conditions under which partial language learners can eventually output only
finite variants of the target language. The combinabilities of other partial
learning criteria will also be briefly studied.Comment: 28 page
- …