4,129 research outputs found
Color Filtering Localization for Three-Dimensional Underwater Acoustic Sensor Networks
Accurate localization for mobile nodes has been an important and fundamental
problem in underwater acoustic sensor networks (UASNs). The detection
information returned from a mobile node is meaningful only if its location is
known. In this paper, we propose two localization algorithms based on color
filtering technology called PCFL and ACFL. PCFL and ACFL aim at collaboratively
accomplishing accurate localization of underwater mobile nodes with minimum
energy expenditure. They both adopt the overlapping signal region of task
anchors which can communicate with the mobile node directly as the current
sampling area. PCFL employs the projected distances between each of the task
projections and the mobile node, while ACFL adopts the direct distance between
each of the task anchors and the mobile node. Also the proportion factor of
distance is proposed to weight the RGB values. By comparing the nearness
degrees of the RGB sequences between the samples and the mobile node, samples
can be filtered out. And the normalized nearness degrees are considered as the
weighted standards to calculate coordinates of the mobile nodes. The simulation
results show that the proposed methods have excellent localization performance
and can timely localize the mobile node. The average localization error of PCFL
can decline by about 30.4% than the AFLA method.Comment: 18 pages, 11 figures, 2 table
SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects
With the proliferation of mobile devices and location-based services,
continuous generation of massive volume of streaming spatial objects (i.e.,
geo-tagged data) opens up new opportunities to address real-world problems by
analyzing them. In this paper, we present a novel continuous bursty region
detection problem that aims to continuously detect a bursty region of a given
size in a specified geographical area from a stream of spatial objects.
Specifically, a bursty region shows maximum spike in the number of spatial
objects in a given time window. The problem is useful in addressing several
real-world challenges such as surge pricing problem in online transportation
and disease outbreak detection. To solve the problem, we propose an exact
solution and two approximate solutions, and the approximation ratio is
in terms of the burst score, where is a parameter
to control the burst score. We further extend these solutions to support
detection of top- bursty regions. Extensive experiments with real-world data
are conducted to demonstrate the efficiency and effectiveness of our solutions
- ā¦