5,728 research outputs found

    Topological view on magnetic adatoms in graphene

    Full text link
    We study theoretically the physical properties of a magnetic impurity in graphene. Within the Anderson model for a very strong Coulomb interaction on the impurity, we start from the Slave-Boson method and introduce a topological picture consisting of a degree of a map and a winding number (WN) to analyze the phase shift and the occupation on the impurity. The occupation is linked to WN. For a generic normal metal we find a fractional WN. In contrast, the winding is accelerated by the relativistic dispersion of graphene at half-filling leading to an integer occupation. We show that the renormalization parameter that shifts the impurity level is insufficient to invert the sign of the energy level. Consequently, the state at half-filling is stable unless a gate voltage is tuned such that the Fermi level touches the edge of the broadened impurity level. Only in this case the zero field susceptibility is finite and shows a pronounced peak structure with the gate voltage.Comment: 9pages. 4 figure

    Doped carrier formulation and mean-field theory of the tt't''J model

    Full text link
    In the generalized-tJ model the effect of the large local Coulomb repulsion is accounted for by restricting the Hilbert space to states with at most one electron per site. In this case the electronic system can be viewed in terms of holes hopping in a lattice of correlated spins, where holes are the carriers doped into the half-filled Mott insulator. To explicitly capture the interplay between the hole dynamics and local spin correlations we derive a new formulation of the generalized-tJ model where doped carrier operators are used instead of the original electron operators. This ``doped carrier'' formulation provides a new starting point to address doped spin systems and we use it to develop a new, fully fermionic, mean-field description of doped Mott insulators This mean-field approach reveals a new mechanism for superconductivity, namely spinon-dopon mixing, and we apply it to the tt't''J model as of interest to high-temperature superconductors. In particular, we use model parameters borrowed from band calculations and from fitting ARPES data to obtain a mean-field phase diagram that reproduces semi-quantitatively that of hole and electron doped cuprates. The mean-field approach hereby presented accounts for the local antiferromagnetic and d-wave superconducting correlations which, we show, provide a rational for the role of t' and t'' in strengthening superconductivity as expected by experiments and other theoretical approaches. As we discuss how t, t' and t'' affect the phase diagram, we also comment on possible scenarios to understand the differences between as-grown and oxygen reduced electron doped samples.Comment: 17 pages, 2 figures. Homepage http://dao.mit.edu/~wen

    Local order measurement in SnGe alloys and monolayer Sn films on Si with reflection electron energy loss spectrometry

    Get PDF
    Measurements of local order are demonstrated in Sn-containing alloys and epitaxial monolayer thickness films by analysis of extended-edge energy loss fine structure (EXELFS) data obtained by reflection electron energy loss spectrometry (REELS). These measurements of short-range order provide a complement to the chemical information obtained with REELS and long-range order obtained using reflection high energy electron diffraction. The results suggest that EXELFS measurements are practical for samples mounted on the growth manipulator in a molecular beam epitaxy chamber. Advantages and limitations of reflection EXELFS are discussed

    Engineering the Kondo and Fano effects in double quantum dots

    Full text link
    We demonstrate delicate control over the Kondo effect and its interplay with quantum interference in an Aharonov-Bohm interferometer containing one Kondo dot and one noninteracting dot. It is shown that the Kondo resonance undergoes a dramatic evolution as the interdot tunnel coupling progressively increases. A novel triple Kondo splitting occurs from the interference between constant and Lorentzian conduction bands that cooperate in forming the Kondo singlet. The device also manifests a highly controllable Fano-Kondo effect in coherent electronic transport, and can be tuned to a regime where the coupled dots behave as decoupled dots.Comment: 5 pages, 4 figure

    Effective-mass Klein-Gordon Equation for non-PT/non-Hermitian Generalized Morse Potential

    Full text link
    The one-dimensional effective-mass Klein-Gordon equation for the real, and non-\textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding eigenfunctions are obtained. They are also calculated for the constant mass case.Comment: 14 page

    FMRI Clustering and False Positive Rates

    Full text link
    Recently, Eklund et al. (2016) analyzed clustering methods in standard FMRI packages: AFNI (which we maintain), FSL, and SPM [1]. They claimed: 1) false positive rates (FPRs) in traditional approaches are greatly inflated, questioning the validity of "countless published fMRI studies"; 2) nonparametric methods produce valid, but slightly conservative, FPRs; 3) a common flawed assumption is that the spatial autocorrelation function (ACF) of FMRI noise is Gaussian-shaped; and 4) a 15-year-old bug in AFNI's 3dClustSim significantly contributed to producing "particularly high" FPRs compared to other software. We repeated simulations from [1] (Beijing-Zang data [2], see [3]), and comment on each point briefly.Comment: 3 pages, 1 figure. A Letter accepted in PNA

    Measurement of Lande g factor of 5D5/2 state of BaII with a single trapped ion

    Full text link
    We present the first terrestrial measurement of the Lande g factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in a linear Paul trap. A frequency-stabilized fiber laser with nominal wavelength 1.762 um was scanned across the 6S1/25D5/2 transition to spectroscopically resolve transitions between Zeeman sublevels of the ground and excited states. From the relative positions of the four narrow transitions observed at several different values for the applied magnetic field, we find a value of 1.2020+/-0.0005 for g of 5D5/2.Comment: 3 figure

    Effect of atmospheric turbulence on propagation properties of optical vortices formed by using coherent laser beam arrays

    Full text link
    In this paper, we consider the effect of the atmospheric turbulence on the propagation of optical vertex formed from the radial coherent laser beam array, with the initially well-defined phase distribution. The propagation formula of the radial coherent laser array passing through the turbulent atmosphere is analytically derived by using the extended Huygens-Fresnel diffraction integral. Based on the derived formula, the effect of the atmospheric turbulence on the propagation properties of such laser arrays has been studied in great detail. Our main results show that the atmospheric turbulence may result in the prohibition of the formation of the optical vortex or the disappearance of the formed optical vortex, which are very different from that in the free space. The formed optical vortex with the higher topological charge may propagate over a much longer distance in the moderate or weak turbulent atmosphere. After the sufficient long-distance atmospheric propagation, all the output beams (even with initially different phase distributions) finally lose the vortex property and gradually become the Gaussian-shaped beams, and in this case the output beams actually become incoherent light fields due to the decoherence effect of the turbulent atmosphere.Comment: 10 pages, 5 figure

    Superconformal defects in the tricritical Ising model

    Full text link
    We study superconformal defect lines in the tricritical Ising model in 2 dimensions. By the folding trick, a superconformal defect is mapped to a superconformal boundary of the N=1 superconformal unitary minimal model of c=7/5 with D_6-E_6 modular invariant. It turns out that the complete set of the boundary states of c=7/5 D_6-E_6 model cannot be interpreted as the consistent set of superconformal defects in the tricritical Ising model since it does not contain the "no defect" boundary state. Instead, we find a set of 18 consistent superconformal defects including "no defect" and satisfying the Cardy condition. This set also includes some defects which are not purely transmissive or purely reflective.Comment: 25 pages, 3 figures. v2: typos corrected. v3: clarification about spin structure aligned theory added, references adde

    The effects of reciprocity, type of relationship, and culture on relationship processes

    Get PDF
    Equity theory suggests that perceiving equity leads to better relationship outcomes than perceiving inequity. However, cultural and relationship differences in tolerance for inequity have been found, suggesting that those from more individualistic cultures may have less tolerance for inequity with friends than those from more collectivistic cultures, with the latter group discriminating more clearly in their reactions to friends and strangers. In our first study, Kadazandusun (N=282) and Australian (N=255) participants evaluated their actual reciprocity in social support with a close friend. In our second study, 103 South East Asians and 128 Australians were randomly assigned to respond to a scenario presenting equity or inequity (underbenefit or overbenefit) with either a close friend or stranger. Study 1 found that participants from both cultures reported reduced desires for future interaction, positive feelings and closeness when they experienced under-benefit as compared to over-benefit or equity. In Study 2, participants from both cultures also reported reduced desires for future interaction, positive feelings and trust when there was inequity and reported a more negative reaction to a stranger than a close friend. These findings are consistent with equity theory and support its cross-cultural applicability
    corecore