28 research outputs found

    Human recombinant anti-thyroperoxidase autoantibodies: in vitro cytotoxic activity on papillary thyroid cancer expressing TPO

    Get PDF
    International audienceBACKGROUND: Thyroid cancers are difficult to treat due to their limited responsiveness to chemo- and radiotherapy. There is thus a great interest in and a need for alternative therapeutic approaches. RESULTS: We studied the cytotoxic activity of anti-thyroperoxidase autoantibodies (anti-TPO aAbs, expressed in baculovirus/insect cell (B4) and CHO cells (B4') or purified from patients' sera) against a papillary thyroid cancer (NPA) cell line. Anti-TPO aAbs from patients' sera led to a partial destruction of NPA cell line by complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) and exhibited an anti-proliferative activity. Comparison of the cytotoxic activity of anti-TPO aAbs shows that B4' induced an anti-proliferative effect and a better ADCC than B4, but a lower one than anti-TPO aAbs from patients' sera. Antibody-dependent cell-mediated cytotoxicity was increased when human peripheral blood mononuclear cells were used as effector cells, suggesting that FcgammaRs, CD64, CD32 and CD16 are involved. Indeed, anti-TPO aAbs from patients' sera, but not B4 and B4', exhibited CDC activity. CONCLUSIONS: These data indicate that anti-TPO aAbs display moderate ADCC and anti-proliferative activities on NPA cells; IgG glycosylation appears to be important for cytotoxic activity and ADCC efficiency depends on FcgammaR-bearing cells. Finally, recombinant human anti-TPO aAbs cannot yet be considered as an optimal tool for the development of a novel therapeutic approach for thyroid cancer

    Glycosylation of FcγRIII in N163 as mechanism of regulating receptor affinity

    No full text
    Human FcγRIII (CD16) is a low-affinity receptor for immunoglobulin G (IgG). There are two different isoforms of this protein: CD16a (transmembranous, expressed on natural killer cells and on macrophages) and CD16b (glycosylphosphatidylinositol-linked, expressed on neutrophilic granulocytes in two allelic forms NA1 and NA2). Both forms of the protein have a variable glycosylation pattern. The NA1 allele of CD16B has four asparagine (N)-linked glycosylation sites. One of them (N163) is localized in the ligand-binding site of domain II. This site is shared by the NA2 allele and CD16A. To examine the functional role of the glycosylation we mutated the four glycosylation sites of the NA1 allele (N39, N75, N163, N170) into glutamine (Q). HEK293 cells were stably transfected with the single mutants and wild-type CD16 as control. We determined binding of human IgG to transfected cells using immunofluorescence studies with anti-human IgG antibody. Monomeric IgG bound to N163Q transfectants with higher affinity than to other transfectants, showing that glycosylation in N163 influences the affinity of CD16 to its ligand. In addition, preincubation of WT-CD16-transfected cells with Tunicamycin (an inhibitor of N-glycosylation) resulted in an increased binding of monomeric IgG whereas N163Q-CD16-transfected cells remained unaffected. Therefore, glycosylation in N163 is a mechanism of regulating affinity of FcγRIII to its ligand IgG
    corecore