5 research outputs found

    Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Synechocystis </it>sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO<sub>2 </sub>and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of <it>Synechocystis </it>sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the <it>Synechocystis </it>metabolic network.</p> <p>Results</p> <p>We report the most comprehensive metabolic model of <it>Synechocystis </it>sp. PCC6803 available, <it>i</it>Syn669, which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a detailed stoichiometric representation of photosynthesis. We demonstrate applicability of <it>i</it>Syn669 for stoichiometric analysis by simulating three physiologically relevant growth conditions of <it>Synechocystis </it>sp. PCC6803, and through <it>in silico </it>metabolic engineering simulations that allowed identification of a set of gene knock-out candidates towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been assessed. Furthermore, <it>i</it>Syn669 was used as a transcriptomic data integration scaffold and thereby we found metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes.</p> <p>Conclusions</p> <p><it>i</it>Syn669 provides a platform for facilitating the development of cyanobacteria as microbial cell factories.</p
    corecore