34 research outputs found

    The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma

    Get PDF
    The anti-PM/Scl autoantibodies are known to characterize a subset of autoimmune patients with myositis, scleroderma (Scl), and the PM/Scl overlap syndrome. The major autoantigens that are recognized by anti-PM/Scl autoantibodies are designated PM/Scl-100 and PM/Scl-75. These autoantigens have been reported to associate into a large complex consisting of 11 to 16 proteins and to play a role in ribosome synthesis. Recently, it was discovered that the PM/Scl complex is the human counterpart of the yeast (Saccharomyces cerevisiae) exosome, which is an RNA-processing complex consisting of 11 3' → 5' exoribonucleases. To date, 10 human exosome components have been identified, although only some of these were studied in more detail. In this review, we discuss some recent advances in the characterization of the PM/Scl complex

    Participation of ADP in the binding of fibrinogen to thrombin- stimulated platelets

    No full text

    Expression of the PlA2 allele of glycoprotein IIIa and its impact on platelet function

    No full text
    Background The platelet fibrinogen receptor represents the final common pathway of platelet activation, and is formed from two glycoprotein (GP) subunits (GPIIb/IIIa). Carriage of the mutant PlA2 allele of GPIIIa has been shown to confer an increased risk of cardiovascular events, but published studies have disagreed as to the mechanism for this association. Objectives To assess whether carriage of the PlA2 allele conforms to Mendelian patterns of expression and to identify whether carriage of the mutant allele modulates platelet function. Methods Expression of the PlA2 allele was assessed in both healthy subjects ( n  = 25) and patients with known coronary artery disease ( n  = 90) through the development and validation of a liquid chromatography, tandem mass spectrometry (LC-MS/MS) assay. Platelet function was assessed in the patient cohort in response to multiple agonists, and these data were analysed in the context of the proteomic data. Results Expression of the wild-type PlA1 allele and mutant PlA2 alleles was readily quantifiable and conformed to Mendelian patterns in both healthy and patient cohorts. Patients who were homozygous for the mutant PlA2 allele had an increased aggregatory response to adenosine diphosphate, collagen, adrenaline, ristocetin, thrombin receptor-activating peptide 6 and U46619, when assessed using agonist-concentration response curves. Conclusions These findings support the hypothesis that carriage of the mutant PlA2 allele mediates an increased risk of cardiovascular events through the modulation of platelet reactivity
    corecore