5 research outputs found
Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels
It has been previously reported that pretreatment with exogenous heat shock protein 70 (Hsp70) is able to protect cells and animals from the deleterious effects of bacterial lipopolysaccharide (LPS) produced by Gram-negative bacteria. However, the effects of Hsp70 pretreatment on lipoteichoic acid (LTA) challenge resulted from Gram-positive bacteria infection have not been fully elucidated. In this study, we demonstrated that preconditioning with human recombinant Hsp70 ameliorates various manifestations of systematic inflammation, including reactive oxygen species, TNFα, and CD11b/CD18 adhesion receptor expression induction observed in different myeloid cells after LTA addition. Therefore, exogenous Hsp70 may provide a mechanism for controlling excessive inflammatory responses after macrophage activation. Furthermore, in a rat model of LTA-induced sepsis, we demonstrated that prophylactic administration of exogenous human Hsp70 significantly exacerbated numerous homeostatic and hemodynamic disturbances induced by LTA challenge and partially normalized the coagulation system and multiple biochemical blood parameters, including albumin and bilirubin concentrations, which were severely disturbed after LTA injections. Importantly, prophylactic intravenous injection of Hsp70 before LTA challenge significantly reduced mortality rates. Thus, exogenous mammalian Hsp70 may serve as a powerful cellular defense agent against the deleterious effects of bacterial pathogens, such as LTA and LPS. Taken together, our findings reveal novel functions of this protein and establish exogenous Hsp70 as a promising pharmacological agent for the prophylactic treatment of various types of sepsis
Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects
Open heart surgery is a unique model to study the interplay between cellular injury, regulation of inflammatory responses and tissue repair. Stress-inducible heat shock protein 70-kDa (Hsp70) provides a molecular link between these events. In addition to molecular chaperoning, Hsp70 exerts modulatory effects on endothelial cells and leukocytes involved in inflammatory networks. Hsp70 residing in the intracellular compartment is part of an inhibitory feedback loop that acts on nuclear factor kappaB (NF-κB). In contrast, extracellular Hsp70 is recognized by multiple germline-encoded immune receptors, e.g., Toll-like receptor (TLR) 2, TLR4, LOX-1, CD91, CD94, CCR5 and CD40. Hsp70 is thereby able to enhance chemotaxis, phagocytosis and cytolytic activity of innate immune cells and stimulate antigen-specific responses. These apparent contradictory pro- and anti-inflammatory effects of endogenous Hsp70 in the context of cardiac surgery are still not fully understood. An all-embracing model of the compartmentalized effects of endogenous Hsp70 in the orchestration of inflammatory responses in cardiac surgery is proposed