293 research outputs found
The effect on the extracellular matrix of the deep fascia in response to leg lengthening
<p>Abstract</p> <p>Background</p> <p>Whereas the alterations of diverse tissues in cellular and molecular levels have been investigated during leg lengthening via microscopy and biochemical studies, little is known about the response of deep fascia. This study aims to investigate the changes of the extracellular matrix in deep fascia in response to leg lengthening.</p> <p>Methods</p> <p>Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. Alcian blue stain and picrosirius-polarization method were used for the study of the extracellular matrix of deep fascia samples. Leica DM LA image analysis system was used to investigate the quantitative changes of collagen type I and III.</p> <p>Results</p> <p>Alcian blue stain showed that glycosaminoglycans of fascia of each group were composed of chondroitin sulphate and heparin sulphate, but not of keratan sulphate. Under the polarization microscopy, the fascia consisted mainly of collagen type I. After leg lengthening, the percentage of collagen type III increased. The most similar collagen composition of the fascia to that of the normal fascia was detected at a 20% increase in tibia length achieved via a distraction rate of 1 mm/d.</p> <p>Conclusion</p> <p>The changes in collagen distribution and composition occur in deep fascia during leg lengthening. Although different lengthening schemes resulted in varied matrix changes, the most comparable collagen composition to be demonstrated under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length. Efficient fascia regeneration is initiated only in certain combinations of the leg load parameters including appropriate intensity and duration time, e.g., either low density distraction that persist a relatively short time or high distraction rates.</p
Impact of leg lengthening on viscoelastic properties of the deep fascia
<p>Abstract</p> <p>Background</p> <p>Despite the morphological alterations of the deep fascia subjected to leg lengthening have been investigated in cellular and extracellular aspects, the impact of leg lengthening on viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test.</p> <p>Methods</p> <p>Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens of 30 mm × 10 mm were clamped with the Instron 1122 tensile tester at room temperature with a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the specimens were elongated until rupture. The load-displacement curves were automatically generated.</p> <p>Results</p> <p>The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each experimental group of the deep fascia after leg lengthening kept the properties. The curves of the deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal deep fascia were 2.69 N (8.97 mN/mm<sup>2</sup>) and 14.11%, respectively. The increases in ultimate tension strength and strain at rupture of the deep fascia after leg lengthening were statistically significant.</p> <p>Conclusion</p> <p>The deep fascia subjected to leg lengthening exhibits viscoelastic properties as collagenous tissues without lengthening other than increased strain and strength. Notwithstanding different lengthening schemes result in varied viscoelastic properties changes, the most comparable viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length.</p
The effect of latency on bone lengthening force and bone mineralization: an investigation using strain gauge mounted on internal distractor device
BACKGROUND: The purpose of this study was to investigate the effect of latency on the development of bone lengthening force and bone mineralization during mandible distraction osteogenesis. METHODS: Distraction tensions were investigated at different latency period in 36 rabbits using internal unilateral distractor. Strain gauges were prepared and attached to the distractor to directly assess the level of distraction tension during mandible lengthening. The tensile force environment of the mandible of rabbit during distraction was evaluated through in vivo experiments using two gauges. The animals were divided into 3 groups each containing 12 rabbits. Latency periods of 0, 4 and 7 days respectively were observed prior to beginning distraction. The distraction protocol consisted of a lengthening rate of 1 mm once daily for 8 days, followed by a consolidation phase of 2 weeks after which the animals were killed. Biopsies specimens were taken from the distracted area at the end of the distraction period. A non-distracted area of the mandible bone served as control. The specimens were analyzed by scanning electron microscopy to assess the ultrastructural pattern, and the bone mineralization. RESULTS: The resting tension acting on the distraction gap increases through distraction. The 7-day latency groups exhibit higher tension then those of 0-day and 4-days latency groups. Quantitative energy dispersive spectral analysis confirmed that immediate distractions were associated with lower calcium and phosphate atomic weight ratio. CONCLUSION: the latency periods could affect the bone lengthening tension and the bone mineralization process
Implants in the severely resorbed mandibles: whether or not to augment? What is the clinician’s preference?
Contains fulltext :
96000.pdf (publisher's version ) (Open Access)INTRODUCTION: The aim of this study is to inventory in the Netherlands which therapy is the clinician's first choice when restoring the edentulous mandible. MATERIAL AND METHODS: A questionnaire was sent to all Dutch Oral and Maxillofacial surgeons. As part of this, the surgeons were invited to treat five virtual edentulous patients, differing only in mandibular residual height. RESULTS: In cases of a sufficient residual height of 15 mm, all surgeons were in favour to insert solely two implants to anchor an overdenture. In case of a residual height of 12 mm, 10% of the surgeons choose for an augmentation procedure. If a patient was presented with a mandibular height of 10 mm, already 40% of the OMF surgeons executed an augmentation procedure. Most (80%) surgeons prefer the (anterior) iliac crest as donor site. The choice of 'whether or not to augment' was not influenced by the surgeon's age; however, the hospital, where he was trained, did. Surgeons trained in Groningen were more in favour of installing short implants in mandibles with reduced vertical height. DISCUSSION: As the option overdenture supported on two interforaminal implants is reimbursed by the Dutch health assurance, this treatment modality is very popular in the Netherlands. From a point of costs and to minimize bypass comorbidity, surgeons should be more reluctant in executing augmentation procedures to restore the resorbed edentulous mandible as it is dated in literature that also in mandibles with a residual height of 10 mm or less, solely placing implants, thus without an augmentation procedure in advance, is a reliable treatment option
Erythropoietin Couples Hematopoiesis with Bone Formation
It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs) isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where the molecular basis for this activity is the production of BMP2 and BMP6 by HSCs. Yet, what stimulates HSCs to produce BMPs is unclear.In this study, we demonstrate that erythropoietin (Epo) activates Jak-Stat signaling pathways in HSCs which leads to the production of BMPs. Critically, Epo also directly activates mesenchymal cells to form osteoblasts in vitro, which in vivo leads to bone formation. Importantly, Epo first activates osteoclastogenesis which is later followed by osteoblastogenesis that is induced by either Epo directly or the expression of BMPs by HSCs to form bone.These data for the first time demonstrate that Epo regulates the formation of bone by both direct and indirect pathways, and further demonstrates the exquisite coupling between hematopoiesis and osteopoiesis in the marrow
- …