5 research outputs found

    Tunable External Cavity Semiconductor Lasers.

    No full text
    In this study, we propose a new method to tune the semiconductor laser lasing frequency and reducing the laser linewidth using an external deriving field. We redeveloped Floquet S-matrix which determines the transmission probabilities and the shape and position of the induced quasibound state, which accumulated incident electrons. We explored the S-matrix numerically for various system parameters. We found that the oscillating field amplitude V1 plays a curial rule in defining the profile of electrons accumulations in the quasibound state and the field’s strength made sift the position of the quasibound state. This sift in the bound state energy due field’s strength is used to tune the lasing frequency and the output of the semiconductor laser linewidth is improved by changing the field’s amplitude the deriving field. By narrowing down the electron accumulations profile the laser linewidth would be narrower

    Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subtelomeric imbalance is widely accepted as related to developmental delay/mental retardation (DD/MR). Fine mapping of aberrations in gene-enriched subtelomeric regions provides essential clues for localizing critical regions, and provides a strategy for identifying new candidate genes. To date, no large-scale study has been conducted on subtelomeric aberrations in DD/MR patients in mainland China.</p> <p>Methods</p> <p>This study included 451 Chinese children with moderate to severe clinically unexplained DD/MR. The subtelomere-MLPA (multiplex ligation dependent probe amplification) and Affymetrix human SNP array 6.0 were used to determine the subtelomeric copy number variations. The exact size and the breakpoint of each identified aberration were well defined.</p> <p>Results</p> <p>The submicroscopic subtelomeric aberrations were identified in 23 patients, with a detection rate of 5.1%. 16 patients had simple deletions, 2 had simple duplications and 5 with both deletions and duplications. The deletions involved 14 different subtelomeric regions (1p, 2p, 4p, 6p, 7p, 7q, 8p, 9p, 10p, 11q, 14q, 15q, 16p and 22q), and duplications involved 7 subtelomeric regions (3q, 4p, 6q, 7p, 8p, 12p and 22q). Of all the subtelomeric aberrations found in Chinese subjects, the most common was 4p16.3 deletion. The sizes of the deletions varied from 0.6 Mb to 12 Mb, with 5-143 genes inside. Duplicated regions were 0.26 Mb to 11 Mb, with 6-202 genes inside. In this study, four deleted subtelomeric regions and one duplicated region were smaller than any other previously reported, specifically the deletions in 11q25, 8p23.3, 7q36.3, 14q32.33, and the duplication in 22q13. Candidate genes inside each region were proposed.</p> <p>Conclusions</p> <p>Submicroscopic subtelomeric aberrations were detected in 5.1% of Chinese children with clinically unexplained DD/MR. Four deleted subtelomeric regions and one duplicated region found in this study were smaller than any previously reported, which will be helpful for further defining the candidate dosage sensitive gene associated with DD/MR.</p
    corecore