212 research outputs found

    Global Update and Trends of Hidden Hunger, 1995-2011: The Hidden Hunger Index

    Get PDF
    Background Deficiencies in essential vitamins and minerals–also termed hidden hunger–are pervasive and hold negative consequences for the cognitive and physical development of children. Methods This analysis evaluates the change in hidden hunger over time in the form of one composite indicator–the Hidden Hunger Index (HHI)–using an unweighted average of prevalence estimates from the Nutrition Impact Model Study for anemia due to iron deficiency, vitamin A deficiency, and stunting (used as a proxy indicator for zinc deficiency). Net changes from 1995–2011 and population weighted regional means for various time periods are measured. Findings Globally, hidden hunger improved (-6.7 net change in HHI) from 1995–2011. Africa was the only region to see a deterioration in hidden hunger (+1.9) over the studied time period; East Asia and the Pacific performed exceptionally well (-13.0), while other regions improved only slightly. Improvements in HHI were mostly due to reductions in zinc and vitamin A deficiencies, while anemia due to iron deficiency persisted and even increased. Interpretation This analysis is critical for informing and tracking the impact of policy and programmatic efforts to reduce micronutrient deficiencies, to advance the global nutrition agenda, and to achieve the Millennium Development Goals (MDGs). However, there remains an unmet need to invest in gathering frequent, nationally representative, high-quality micronutrient data as we renew our efforts to scale up nutrition, and as we enter the post-2015 development agenda. Funding Preparation of this manuscript was funded by Sight and Life. There was no funding involved in the study design, data collection, analysis, or decision to publish

    Mitral Regurgitation and Pulmonary Edema

    Full text link

    Activation of superior colliculi in humans during visual exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.</p> <p>Results</p> <p>Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.</p> <p>Conclusion</p> <p>Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.</p

    Modulating RNA structure and catalysis: lessons from small cleaving ribozymes

    Get PDF
    RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today’s knowledge in the field

    Restricted Morphological and Behavioral Abnormalities following Ablation of β-Actin in the Brain

    Get PDF
    The local translation of β-actin is one mechanism proposed to regulate spatially-restricted actin polymerization crucial for nearly all aspects of neuronal development and function. However, the physiological significance of localized β-actin translation in neurons has not yet been demonstrated in vivo. To investigate the role of β-actin in the mammalian central nervous system (CNS), we characterized brain structure and function in a CNS-specific β-actin knock-out mouse (CNS-ActbKO). β-actin was rapidly ablated in the embryonic mouse brain, but total actin levels were maintained through upregulation of other actin isoforms during development. CNS-ActbKO mice exhibited partial perinatal lethality while survivors presented with surprisingly restricted histological abnormalities localized to the hippocampus and cerebellum. These tissue morphology defects correlated with profound hyperactivity as well as cognitive and maternal behavior impairments. Finally, we also identified localized defects in axonal crossing of the corpus callosum in CNS-ActbKO mice. These restricted defects occurred despite the fact that primary neurons lacking β-actin in culture were morphologically normal. Altogether, we identified novel roles for β-actin in promoting complex CNS tissue architecture while also demonstrating that distinct functions for the ubiquitously expressed β-actin are surprisingly restricted in vivo

    Prognostic value of CT coronary angiography in diabetic and non-diabetic subjects with suspected CAD: importance of presenting symptoms

    Get PDF
    AIM: To assess the prognostic relevance of 64-slice computed tomography coronary angiography (CT-CA) and symptoms in diabetics and non-diabetics referred for cardiac evaluation. METHODS: We followed 210 patients with diabetes type 2 (DM) and 203 non-diabetic patients referred for CT-CA for ruling out coronary artery disease (CAD). Patients were without known history of CAD and were divided into four categories on the basis of symptoms at presentation (none, atypical angina, typical angina and dyspnoea). Clinical end points were major cardiac events (MACE): cardiac-related death, non-fatal myocardial infarction, unstable angina and cardiac revascularizations. Cox proportional hazard models, with and without adjustment for risk factors and multiplicative interaction term (obstructive CAD 7 DM), were developed to predict outcome. RESULTS: DM patients with dyspnoea or who were asymptomatic showed a higher prevalence of obstructive CAD than non-diabetics (p\u2009 64\u20090.01). At mean follow-up of 20.4 months, DM patients had worse cardiac event-free survival in comparison with non-DM patients (90% vs. 81%, p\u2009=\u20090.02). In multivariate analysis, CT-CA evidence of obstructive CAD (in DM patients: HR: 6.4; 95% CI: 2.3-17.5; p\u2009100 in non-DM patients (HR: 5.6; 95% CI: 1.4-21.5; p\u2009=\u20090.01). In Cox regression analysis of the overall population, interaction term obstructive CAD 7 DM resulted in non-significance. CONCLUSIONS: Among DM patients, dyspnoea carried a high event risk with a MACE rate four times higher. CT-CA findings were strongly predictive of outcome and proved valuable for further risk stratification

    Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1

    Get PDF
    ) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells

    Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    Get PDF
    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days) acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.This research was supported by Junta de Andalucía (Excelencia P07-CVI-02598 to PC, and P09-RNM-5376 to JMMS), the Spanish Ministries of Medio Ambiente, Rural y Marino (PN2009/067 to PC) and Ciencia e Innovación (GLC2008-01127/BOS and CGL2011-23681 to PC), the ERC Advanced Grant project number 250254 “MINOS” (to GB), and two Spanish government grants (to JADM and FJB)
    corecore