17 research outputs found
A formally verified compiler back-end
This article describes the development and formal verification (proof of
semantic preservation) of a compiler back-end from Cminor (a simple imperative
intermediate language) to PowerPC assembly code, using the Coq proof assistant
both for programming the compiler and for proving its correctness. Such a
verified compiler is useful in the context of formal methods applied to the
certification of critical software: the verification of the compiler guarantees
that the safety properties proved on the source code hold for the executable
compiled code as well
Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies
Background: Bacterial biofilms are predominant in natural ecosystems and constitute a public health threat because of their outstanding resistance to antibacterial treatments and especially to antibiotics. To date, several systems have been developed to grow bacterial biofilms in order to study their phenotypes and the physiology of sessile cells. Although relevant, such systems permit analysis of various aspects of the biofilm state but often after several hours of bacterial growth.Results: Here we describe a simple and easy-to-use system for growing P. aeruginosa biofilm based on the medium adsorption onto glass wool fibers. This approach which promotes bacterial contact onto the support, makes it possible to obtain in a few minutes a large population of sessile bacteria. Using this growth system, we demonstrated the feasibility of exploring the early stages of biofilm formation by separating by electrophoresis proteins extracted directly from immobilized cells. Moreover, the involvement of protein synthesis in P. aeruginosa attachment is demonstrated.Conclusions: Our system provides sufficient sessile biomass to perform biochemical and proteomic analyses from the early incubation period, thus paving the way for the molecular analysis of the early stages of colonization that were inaccessible to date
Hesperidin Gastroresistant Microparticles by Spray-Drying: Preparation, Characterization, and Dissolution Profiles
Gastroresistant microparticles for oral administration of hesperidin (Hd) were produced by spray-drying using cellulose acetate phthalate (CAP) as enteric polymer in different polymer/Hd weight ratio (1:1, 3:1, and 5:1), and a series of enhancers of the dissolution rate, such as sodium carboxymethylcellulose crosslinked (CMC), sodium dodecylbenzene sulfonate (SDBS), or Tween85. The raw materials and the microparticles were investigated by differential-scanning calorimetry, X-ray diffraction, infrared spectroscopy and imaged using scanning electron and fluorescence microscopy. In vitro dissolution tests were conducted using a pH-change method to investigate the influence of formulative parameters on the dissolution/release properties of the drug. CAP/Hd microparticles showed a good gastro-resistance but incomplete drug dissolution in the simulated intestinal fluid (SIF). The presence of the enhancers in the formulation produced well-formed microparticles with different size and morphology, containing the drug well coated by the polymer. All the enhancers were able to increase the dissolution rate of Hd in the simulated intestinal environment without altering CAP ability to protect Hd in the acidic fluid. The spray-drying technique and process conditions selected were effective in microencapsulating and stabilizing the flavonoid giving satisfactory encapsulation efficiency, product yield, and microparticles morphology, and a complete drug release in the intestine