175 research outputs found
Carbon stock growth in a forest stand: the power of age
BACKGROUND: Understanding the relationship between the age of a forest stand and its biomass is essential for managing the forest component of the global carbon cycle. Since biomass increases with stand age, postponing harvesting to the age of biological maturity may result in the formation of a large carbon sink. This article quantifies the carbon sequestration capacity of forests by suggesting a default rule to link carbon stock and stand age. RESULTS: The age dependence of forest biomass is shown to be a power-law monomial where the power of age is theoretically estimated to be 4/5. This theoretical estimate is close to the known empirical estimate; therefore, it provides a scientific basis for a quick and transparent assessment of the benefits of postponing the harvest, suggesting that the annual magnitude of the sink induced by delayed harvest lies in the range of 1–2% of the baseline carbon stock. CONCLUSION: The results of this study imply that forest age could be used as an easily understood and scientifically sound measure of the progress in complying with national targets on the protection and enhancement of forest carbon sinks
Normative productivity of the global vegetation
<p>Abstract</p> <p>Background</p> <p>The biosphere models of terrestrial productivity are essential for projecting climate change and assessing mitigation and adaptation options. Many of them have been developed in connection to the International Geosphere-Biosphere Program (IGBP) that backs the work of the Intergovernmental Panel on Climate Change (IPCC). In the end of 1990s, IGBP sponsored release of a data set summarizing the model outputs and setting certain norms for estimates of terrestrial productivity. Since a number of new models and new versions of old models were developed during the past decade, these normative data require updating.</p> <p>Results</p> <p>Here, we provide the series of updates that reflects evolution of biosphere models and demonstrates evolutional stability of the global and regional estimates of terrestrial productivity. Most of them fit well the long-living Miami model. At the same time we call attention to the emerging alternative: the global potential for net primary production of biomass may be as high as 70 PgC y<sup>-1</sup>, the productivity of larch forest zone may be comparable to the productivity of taiga zone, and the productivity of rain-green forest zone may be comparable to the productivity of tropical rainforest zone.</p> <p>Conclusion</p> <p>The departure from Miami model's worldview mentioned above cannot be simply ignored. It requires thorough examination using modern observational tools and techniques for model-data fusion. Stability of normative knowledge is not its ultimate goal – the norms for estimates of terrestrial productivity must be evidence-based.</p
Predicting the deforestation-trend under different carbon-prices
BACKGROUND: Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. RESULTS: Baseline scenario calculations show that close to 200 mil ha or around 5% of todays forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US/year. On the other hand a carbon tax of 12 in 2005 to 4.3 billion US in 2100 due to decreasing deforestation speed. CONCLUSION: Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of incentives and taxes could turn out to be a viable solution for this problem. Increasing the value of forest land and thereby make it less easily prone to deforestation would act as a strong incentive to increase productivity of agricultural and fuelwood production, which could be supported by revenues generated by the deforestation tax
Perturbative quantum gravity with the Immirzi parameter
We study perturbative quantum gravity in the first-order tetrad formalism.
The lowest order action corresponds to Einstein-Cartan plus a parity-odd term,
and is known in the literature as the Holst action. The coupling constant of
the parity-odd term can be identified with the Immirzi parameter of loop
quantum gravity. We compute the quantum effective action in the one-loop
expansion. As in the metric second-order formulation, we find that in the case
of pure gravity the theory is on-shell finite, and the running of Newton's
constant and the Immirzi parameter is inessential. In the presence of fermions,
the situation changes in two fundamental aspects. First, non-renormalizable
logarithmic divergences appear, as usual. Second, the Immirzi parameter becomes
a priori observable, and we find that it is renormalized by a four-fermion
interaction generated by radiative corrections. We compute its beta function
and discuss possible implications. The sign of the beta function depends on
whether the Immirzi parameter is larger or smaller than one in absolute value,
and the values plus or minus one are UV fixed-points (we work in Euclidean
signature). Finally, we find that the Holst action is stable with respect to
radiative corrections in the case of minimal coupling, up to higher order
non-renormalizable interactions.Comment: v2 minor amendment
The mutational impact of culturing human pluripotent and adult stem cells
Genetic changes acquired during in vitro culture pose a risk for the successful application of stem cells in regenerative medicine. To assess the genetic risks induced by culturing, we determined all mutations in individual human stem cells by whole genome sequencing. Individual pluripotent, intestinal, and liver stem cells accumulate 3.5 ± 0.5, 7.2 ± 1.1 and 8.3 ± 3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of adult stem cells is nearly 40-fold higher than the in vivo mutation accumulation rate. Mutational signature analysis reveals that in vitro induced mutations are caused by oxidative stress. Reducing oxygen tension in culture lowers the mutational load. We use the mutation rates, spectra, and genomic distribution to model the accumulation of oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Our study provides empirically defined parameters to assess the mutational risk of stem cell based therapies
Carbon storage of headwater riparian zones in an agricultural landscape
<p>Abstract</p> <p>Background</p> <p>In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would both increase carbon storage and improve water quality. Age and management-related cover/condition classes of headwater stream networks can be used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions classes and their relative distribution on the landscape are known.</p> <p>Results</p> <p>Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242 MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide buffer zones.</p> <p>Conclusions</p> <p>Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature forest along headwater reaches worldwide has the potential to not only improve water quality, but also simultaneously reduce atmospheric CO<sub>2</sub>.</p
Reconstruction of the Transmission History of RNA Virus Outbreaks Using Full Genome Sequences: Foot-and-Mouth Disease Virus in Bulgaria in 2011
<div><p>Improvements to sequencing protocols and the development of computational phylogenetics have opened up opportunities to study the rapid evolution of RNA viruses in real time. In practical terms, these results can be combined with field data in order to reconstruct spatiotemporal scenarios that describe the origin and transmission pathways of viruses during an epidemic. In the case of notifiable diseases, such as foot-and-mouth disease (FMD), these analyses provide important insights into the epidemiology of field outbreaks that can support disease control programmes. This study reconstructs the origin and transmission history of the FMD outbreaks which occurred during 2011 in Burgas Province, Bulgaria, a country that had been previously FMD-free-without-vaccination since 1996. Nineteen full genome sequences (FGS) of FMD virus (FMDV) were generated and analysed, including eight representative viruses from all of the virus-positive outbreaks of the disease in the country and 11 closely-related contemporary viruses from countries in the region where FMD is endemic (Turkey and Israel). All Bulgarian sequences shared a single putative common ancestor which was closely related to the index case identified in wild boar. The closest relative from outside of Bulgaria was a FMDV collected during 2010 in Bursa (Anatolia, Turkey). Within Bulgaria, two discrete genetic clusters were detected that corresponded to two episodes of outbreaks that occurred during January and March-April 2011. The number of nucleotide substitutions that were present between, and within, these separate clusters provided evidence that undetected FMDV infection had occurred. These conclusions are supported by laboratory data that subsequently identified three additional FMDV-infected livestock premises by serosurveillance, as well as a number of antibody positive wild boar on both sides of the border with Turkish Thrace. This study highlights how FGS analysis can be used as an effective on-the-spot tool to support and help direct epidemiological investigations of field outbreaks.</p> </div
The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly
Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs
Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5′ and 3′ UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org)
- …