7 research outputs found
Gulf-Wide Decreases in the Size of Large Coastal Sharks Documented by Generations of Fishermen
Large sharks are top predators in most coastal and marine ecosystems throughout the world, and evidence of their reduced prominence in marine ecosystems has been a serious concern for fisheries and ecosystem management. Unfortunately, quantitative data to document the extent, timing, and consequences of changes in shark populations are scarce, thwarting examination of long-term (decadal, century) trends, and reconstructions based on incomplete data sets have been the subject of debate. Absence of quantitative descriptors of past ecological conditions is a generic problem facing many fields of science but is particularly troublesome for fisheries scientists who must develop specific targets for restoration. We were able to use quantitative measurements of shark sizes collected annually and independently of any scientific survey by thousands of recreational fishermen over the last century to document decreases in the size of large sharks from the northern Gulf of Mexico. Based on records from fishing rodeos in three U.S. coastal states, the size (weight or length) of large sharks captured by fishermen decreased by 50-70% during the 20 years after the 1980s. The pattern is largely driven by reductions in the occurrence and sizes of Tiger Sharks Galeocerdo cuvier and Bull Sharks Carcharhinus leucas and to a lesser extent Hammerheads Sphyrna spp. This decrease occurred despite increasing fishing effort and advances in technology, but it is coincident with the capitalization of the U.S. commercial shark long-line fishery in the GOM. Received April 10, 2012; accepted March 7, 2013
Recommended from our members
Diel vertical habitat use observations of a scalloped hammerhead and a bigeye thresher in the northern Gulf of Mexico
Understanding habitat use of elasmobranchs in pelagic environments is complicated due to the mobility of these large animals and their ability to move great distances in a three-dimensional environment. The Gulf of Mexico is a region where many highly migratory pelagic shark species occur, while in close proximity to coastal, anthropogenic activity including recreational and commercial fisheries. This study provides summary information on the vertical habitat use for a single male scalloped hammerhead and a single male bigeye thresher that were each caught and tagged with an archiving satellite tag. The scalloped hammerhead occupied shallow depths (350 m) during the day, then occupying shallower depths (50–100 m) during the night. By providing summary information, this note urges future research to provide scientific information on pelagic, highly migratory species for management efforts in the Gulf of Mexico region
Recommended from our members
Importance of low-relief nursery habitat for reef fishes.
Coastal restoration projects to mitigate environmental impacts have increased global demand for sand resources. Unfortunately, these resources are often extracted from sand/shell banks on the inner continental shelf, resulting in significant alteration or loss of low-relief reefs in coastal oceans. Experimental reefs (oyster shell, limestone rubble, composite) were deployed in the western Gulf of Mexico to assess their potential value as nurseries for newly settled reef fishes. Occurrence, abundance, and species richness of juvenile fishes were significantly higher on all three types of low-relief reefs compared with unconsolidated sediment. Moreover, reefs served as nursery habitat for a range of reef fish taxa (angelfishes, grunts, sea basses, snappers, and triggerfishes). Red snapper (Lutjanus campechanus) was the dominant species present on all experimental reefs (100% occurrence), and mean density of this species was markedly higher on each of the three low-relief reefs (>40.0 individuals/reef) relative to comparable areas over unconsolidated sediment (0.2 individuals). Our results suggest creation or restoration of structurally complex habitat on the inner shelf has the potential to markedly increase early life survival and expedite the recovery of exploited reef fish populations, and therefore may represent a critical conservation tool for increasing recruitment and maintaining reef fish diversity