319 research outputs found
The thermodynamic evolution of the cosmological event horizon
By manipulating the integral expression for the proper radius of the
cosmological event horizon (CEH) in a Friedmann-Robertson-Walker (FRW)
universe, we obtain an analytical expression for the change \dd R_e in
response to a uniform fluctuation \dd\rho in the average cosmic background
density . We stipulate that the fluctuation arises within a vanishing
interval of proper time, during which the CEH is approximately stationary, and
evolves subsequently such that \dd\rho/\rho is constant. The respective
variations 2\pi R_e \dd R_e and \dd E_e in the horizon entropy and
enclosed energy should be therefore related through the cosmological
Clausius relation. In that manner we find that the temperature of the CEH
at an arbitrary time in a flat FRW universe is , which recovers
asymptotically the usual static de Sitter temperature. Furthermore, it is
proven that during radiation-dominance and in late times the CEH conforms to
the fully dynamical First Law T_e \drv S_e = P\drv V_e - \drv E_e, where
is the enclosed volume and is the average cosmic pressure.Comment: 6 page
Thermodynamics of Modified Chaplygin Gas and Tachyonic Field
Here we generalize the results of the work of ref. [10] in modified Chaplygin
gas model and tachyonic field model. Here we have studied the thermodynamical
behaviour and the equation of state in terms of volume and temperature for both
models. We have used the solution and the corresponding equation of state of
our previous work [12] for tachyonic field model. We have also studied the
thermodynamical stability using thermal equation of state for the tachyonic
field model and have shown that there is no critical points during
thermodynamical expansion. The determination of due to expansion for
the tachyonic field have been discussed by assuming some initial conditions.
Here, the thermal quantities have been investigated using some reduced
parameters.Comment: 10 page
Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials
We investigate the cosmological evolution of the tachyon and phantom-tachyon
scalar field by considering the potential parameter () as a function of another potential parameter
(), which correspondingly extends the
analysis of the evolution of our universe from two-dimensional autonomous
dynamical system to the three-dimension. It allows us to investigate the more
general situation where the potential is not restricted to inverse square
potential and .One result is that, apart from the inverse square potential,
there are a large number of potentials which can give the scaling and dominant
solution when the function equals for one or some
values of as well as the parameter satisfies
condition Eq.(18) or Eq.(19). We also find that for a class of different
potentials the dynamics evolution of the universe are actually the same and
therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal
C(2010), online first,
http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=
Statefinder and Om Diagnostics for Interacting New Holographic Dark Energy Model and Generalized Second Law of Thermodynamics
In this work, we have considered that the flat FRW universe is filled with
the mixture of dark matter and the new holographic dark energy. If there is an
interaction, we have investigated the natures of deceleration parameter,
statefinder and diagnostics. We have examined the validity of the first
and generalized second laws of thermodynamics under these interactions on the
event as well as apparent horizon. It has been observed that the first law is
violated on the event horizon. However, the generalized second law is valid
throughout the evolution of the universe enveloped by the apparent horizon.
When the event horizon is considered as the enveloping horizon, the generalized
second law is found to break down excepting at late stage of the universe.Comment: 9 pages, 13 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
- …