79 research outputs found
Double-resonant fast particle-wave interaction
In future fusion devices fast particles must be well confined in order to
transfer their energy to the background plasma. Magnetohydrodynamic
instabilities like Toroidal Alfv\'en Eigenmodes or core-localized modes such as
Beta Induced Alfv\'en Eigenmodes and Reversed Shear Alfv\'en Eigenmodes, both
driven by fast particles, can lead to significant losses. This is observed in
many ASDEX Upgrade discharges. The present study applies the drift-kinetic
HAGIS code with the aim of understanding the underlying resonance mechanisms,
especially in the presence of multiple modes with different frequencies. Of
particular interest is the resonant interaction of particles simultaneously
with two different modes, referred to as 'double-resonance'. Various mode
overlapping scenarios with different q profiles are considered. It is found
that, depending on the radial mode distance, double-resonance is able to
enhance growth rates as well as mode amplitudes significantly. Surprisingly, no
radial mode overlap is necessary for this effect. Quite the contrary is found:
small radial mode distances can lead to strong nonlinear mode stabilization of
a linearly dominant mode.Comment: 12 pages, 11 figures; Nuclear Fusion 52 (2012
Numerical studies of edge localized instabilities in tokamaks
A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code
Magnetization curling in perpendicular iron particle arrays (alumite media)
Alumite has been investigated by measuring the hysteresis loops for different field directions to determine the influence of the particle interactions in an perpendicular oriented particle medium on the angular dependence of the coercivity and the hsyteresis loss. Alumite is an ideal model material for this purpose because the particle size and particle distance are well defined and can be varied independently. It is shown that the coercivity of the particle array can be identified with the nucleation field of one single particle for perpendicular fields. It is clear from the radius dependence of the coercivity that the reversal mode is the curling mode. The angular dependence of the coercivity does not agree with the well-known theoretical curve for one particle, which is caused by the particle interactions. The same can be said about the angular dependence of the hsyteresis loss. Calculations of hysteresis loops of particle arrays with interacting particles show the influence of these interactions on the angular dependence of the coercivity
Implementation of the full viscoresistive magnetohydrodynamic equations in a nonlinear finite element code
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation
- …