91 research outputs found

    Decay of long-lived massive closed superstring states: Exact results

    Full text link
    We find a one-parameter family of long-lived physical string states in type II superstring theory. We compute the decay rate by an exact numerical evaluation of the imaginary part of the one-loop propagator. Remarkably, the lifetime rapidly increases with the mass. We find a power-law dependence of the form T=const.g−2MassαT = const. g^{-2} Mass^\alpha, where the value of α\alpha depends on the parameter characterizing the state. For the most stable state in this family, one has α =5\alpha ~= 5. The dominant decay channel of these massive string states is by emission of soft massless particles. The quantum states can be viewed semiclassically as closed strings which cannot break during the classical evolution.Comment: Latex, 5 figures, 35 pages (= 23 pages + appendices). Minor correction

    Wavy Strings: Black or Bright?

    Get PDF
    Recent developments in string theory have brought forth a considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,ml,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the `horizon' of a black string superposed with a vibration in any mode with l≄1l \ge 1. The same argument applied to longitudinal (l=0l=0) waves detects only finite tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons.Comment: 45 pages, latex, no figure

    On solvable models of type IIB superstring in NS-NS and R-R plane wave backgrounds

    Get PDF
    We consider type IIB string in the two plane-wave backgrounds which may be interpreted as special limits of the AdS_3 x S^3 metric supported by either the NS-NS or R-R 3-form field. The NS-NS plane-wave string model is equivalent to a direct generalization of the Nappi-Witten model, with its spectrum being similar to that of strings in constant magnetic field. The R-R model can be solved in the light-cone gauge, where the Green-Schwarz action describes 4 massive and 4 massless copies of free bosons and fermions. We find the spectra of the two string models and study the asymptotic density of states. We also discuss a more general class of exactly solvable plane-wave models with reduced supersymmetry which is obtained by adding twists in two spatial 2-planes.Comment: 36 pages, harvmac. v2: discussion of equivalence of the supergravity parts of the spectra of the NS-NS and R-R models added in sect.5.3; v3: added remark on periodicity of the NS-NS spectrum; v4: minor correction in sect.6.

    Strings on type IIB pp-wave backgrounds with interacting massive theories on the worldsheet

    Full text link
    We consider superstring theories on pp-wave backgrounds which result in an integrable N=(2,2){\cal N}=(2,2) supersymmetric Landau-Ginzburg theory on the worldsheet. We obtain exact eigenvalues of the light-cone gauge superstring hamiltonian in the massive and interacting world-sheet theory with superpotential Z3−ZZ^3-Z. We find the modes of the supergravity part of the string spectrum, and their space-time interpretation. Because the system is effectively at strong coupling on the worldsheet, these modes are not in one-to-one correspondence with the usual type IIB supergravity modes in the p−→0p_{-} \to 0 limit. However, the above correspondence holds in the αâ€Č→0\alpha'\to 0 limit.Comment: 20 pages, 1 figure; minor changes, comments adde

    (Twisted) Toroidal Compactification of pp-Waves

    Full text link
    The maximally supersymmetric type IIB pp-wave is compactified on spatial circles, with and without an auxiliary rotational twist. All spatial circles of constant radius are identified. Without the twist, an S1^1 compactification can preserve 24, 20 or 16 supercharges. T2T^2 compactifications can preserve 20, 18 or 16 supercharges; T3T^3 compactifications can preserve 18 or 16 supercharges and higher compactifications preserve 16 supercharges. The worldsheet theory of this background is discussed. The T-dual and decompactified type IIA and M-theoretic solutions which preserve 24 supercharges are given. Some comments are made regarding the AdS parent and the CFT description.Comment: 22 pages REVTeX 4 and AMSLaTeX. v3: References and a paragraph on nine dimensional Killing spinors were added. v4: A few typos corrected and a footnote was modifie

    Generalizations of pp-wave spacetimes in higher dimensions

    Full text link
    We shall investigate DD-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from the Riemann tensor and its covariant derivatives are zero. These spacetimes are higher-dimensional generalizations of DD-dimensional pp-wave spacetimes, which have been of interest recently in the context of string theory in curved backgrounds in higher dimensions.Comment: 5 pages, RevTex, to appear in Physical Review

    Circular Semiclassical String solutions on Confining AdS/CFT Backgrounds

    Get PDF
    We study multiwrapped circular string pulsating in the radial direction of AdS black hole. We compute the energy of this string as a function of a large quantum number n. One then could associate it with energy and a quantum number of states in the dual finite temperature {\cal N}=4 SYM theory as well as three dimensional pure gauge theory. We observe that the n dependence of the energy has a universal form. We have also considered pulsating string in the background of the near-extremal D4-brane solution. Circular pulsating membrane in M-theory on AdS_7\times S^4 has also been studied.Comment: 14 pages, latex, v2: typos corrected, refs. adde

    A New Cosmological Scenario in String Theory

    Get PDF
    We consider new cosmological solutions with a collapsing, an intermediate and an expanding phase. The boundary between the expanding (collapsing) phase and the intermediate phase is seen by comoving observers as a cosmological past (future) horizon. The solutions are naturally embedded in string and M-theory. In the particular case of a two-dimensional cosmology, space-time is flat with an identification under boost and translation transformations. We consider the corresponding string theory orbifold and calculate the modular invariant one-loop partition function. In this case there is a strong parallel with the BTZ black hole. The higher dimensional cosmologies have a time-like curvature singularity in the intermediate region. In some cases the string coupling can be made small throughout all of space-time but string corrections become important at the singularity. This happens where string winding modes become light which could resolve the singularity. The new proposed space-time casual structure could have implications for cosmology, independently of string theory.Comment: 28 pages, 3 figures; v2: Added new subsection relating two-dimensional model to BTZ black hole, typos corrected and references added; v3: minor corrections, PRD versio

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D

    Classical and Quantum Strings in compactified pp-waves and Godel type Universes

    Full text link
    We consider Neveu-Schwarz pp-waves with spacetime supersymmetry. Upon compactification of a spacelike direction, these backgrounds develop Closed Null Curves (CNCs) and Closed Timelike Curves (CTCs), and are U-dual to supersymmetric Godel type universes. We study classical and quantum strings in this background, with emphasis on the strings winding around the compact direction. We consider two types of strings: long strings stabilized by NS flux and rotating strings which are stabilized against collapse by angular momentum. Some of the latter strings wrap around CNCs and CTCs, and are thus a potential source of pathology. We analyze the partition function, and in particular discuss the effects of these string states. Although our results are not conclusive, the partition function seems to be dramatically altered due to the presence of CNCs and CTCs. We discuss some interpretations of our results, including a possible sign of unitary violation.Comment: 42 pages, LaTeX, 2 figure
    • 

    corecore