1,895 research outputs found
On Hoyle-Narlikar-Wheeler mechanism of vibration energy powered magneto-dipole emission of neutron stars
We revisit the well-known Hoyle-Narlikar-Wheeler proposition that neutron
star emerging in the magnetic-flux-conserving process of core-collapse
supernova can convert the stored energy of Alfven vibrations into power of
magneto-dipole radiation. We show that the necessary requirement for the energy
conversion is the decay of internal magnetic field. In this case the loss of
vibration energy of the star causes its vibration period, equal to period of
pulsating emission, to lengthen at a rate proportional to the rate of magnetic
field decay. These prediction of the model of vibration powered neutron star
are discussed in juxtaposition with data on pulsating emission of magnetars
whose radiative activity is generally associated with the decay of ultra strong
magnetic field.Comment: Accepted for publication in Astrophysics & Space Scienc
Correlations in Ising chains with non-integrable interactions
Two-spin correlations generated by interactions which decay with distance r
as r^{-1-sigma} with -1 <sigma <0 are calculated for periodic Ising chains of
length L. Mean-field theory indicates that the correlations, C(r,L), diminish
in the thermodynamic limit L -> \infty, but they contain a singular structure
for r/L -> 0 which can be observed by introducing magnified correlations,
LC(r,L)-\sum_r C(r,L). The magnified correlations are shown to have a scaling
form F(r/L) and the singular structure of F(x) for x->0 is found to be the same
at all temperatures including the critical point. These conclusions are
supported by the results of Monte Carlo simulations for systems with sigma
=-0.50 and -0.25 both at the critical temperature T=Tc and at T=2Tc.Comment: 13 pages, latex, 5 eps figures in a separate uuencoded file, to
appear in Phys.Rev.
The role of insulin receptor substrate 2 in hypothalamic and β cell function
Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in β cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and β cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced β cell mass. Overt diabetes did not ensue, because β cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced β cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in β cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis
Critical behavior of the frustrated antiferromagnetic six-state clock model on a triangular lattice
We study the anti-ferromagnetic six-state clock model with nearest neighbor
interactions on a triangular lattice with extensive Monte-Carlo simulations. We
find clear indications of two phase transitions at two different temperatures:
Below a chirality order sets in and by a thorough finite size scaling
analysis of the specific heat and the chirality correlation length we show that
this transition is in the Ising universality class (with a non-vanishing
chirality order parameter below ). At the spin-spin
correlation length as well as the spin susceptibility diverges according to a
Kosterlitz-Thouless (KT) form and spin correlations decay algebraically below
. We compare our results to recent x-ray diffraction experiments on the
orientational ordering of CFBr monolayers physisorbed on graphite. We argue
that the six-state clock model describes the universal feature of the phase
transition in the experimental system and that the orientational ordering
belongs to the KT universality class.Comment: 8 pages, 9 figure
Dynamical Structure Factor for the Alternating Heisenberg Chain: A Linked Cluster Calculation
We develop a linked cluster method to calculate the spectral weights of
many-particle excitations at zero temperature. The dynamical structure factor
is expressed as a sum of exclusive structure factors, each representing
contributions from a given set of excited states. A linked cluster technique to
obtain high order series expansions for these quantities is discussed. We apply
these methods to the alternating Heisenberg chain around the dimerized limit
(), where complete wavevector and frequency dependent spectral
weights for one and two-particle excitations (continuum and bound-states) are
obtained. For small to moderate values of the inter-dimer coupling parameter
, these lead to extremely accurate calculations of the dynamical
structure factors. We also examine the variation of the relative spectral
weights of one and two-particle states with bond alternation all the way up to
the limit of the uniform chain (). In agreement with Schmidt and
Uhrig, we find that the spectral weight is dominated by 2-triplet states even
at , which implies that a description in terms of triplet-pair
excitations remains a good quantitative description of the system even for the
uniform chain.Comment: 26 pages, 17 figure
A neutron scattering study of two-magnon states in the quantum magnet copper nitrate
We report measurements of the two-magnon states in a dimerized
antiferromagnetic chain material, copper nitrate (Cu(NO3)2*2.5D2O). Using
inelastic neutron scattering we have measured the one and two magnon excitation
spectra in a large single crystal. The data are in excellent agreement with a
perturbative expansion of the alternating Heisenberg Hamiltonian from the
strongly dimerized limit. The expansion predicts a two-magnon bound state for q
~ (2n+1)pi*d which is consistent with the neutron scattering data.Comment: 11 pages of revtex style with 6 figures include
From Atiyah Classes to Homotopy Leibniz Algebras
A celebrated theorem of Kapranov states that the Atiyah class of the tangent
bundle of a complex manifold makes into a Lie algebra object in
, the bounded below derived category of coherent sheaves on .
Furthermore Kapranov proved that, for a K\"ahler manifold , the Dolbeault
resolution of is an
algebra. In this paper, we prove that Kapranov's theorem holds in much wider
generality for vector bundles over Lie pairs. Given a Lie pair , i.e. a
Lie algebroid together with a Lie subalgebroid , we define the Atiyah
class of an -module (relative to ) as the obstruction to
the existence of an -compatible -connection on . We prove that the
Atiyah classes and respectively make and
into a Lie algebra and a Lie algebra module in the bounded below
derived category , where is the abelian
category of left -modules and is the universal
enveloping algebra of . Moreover, we produce a homotopy Leibniz algebra and
a homotopy Leibniz module stemming from the Atiyah classes of and ,
and inducing the aforesaid Lie structures in .Comment: 36 page
- …