15 research outputs found

    Core human mitochondrial transcription apparatus is a regulated two-component system in vitro

    Get PDF
    The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously

    Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro

    Get PDF
    Cell-based studies support the existence of two promoters on the heavy strand of mtDNA: heavy-strand promoter 1 (HSP1) and HSP2. However, transcription from HSP2 has been reported only once in a cell-free system, and never when recombinant proteins have been used. Here, we document transcription from HSP2 using an in vitro system of defined composition. An oligonucleotide template representing positions 596-685 of mtDNA was sufficient to observe transcription by the human mtRNA polymerase (POLRMT) that was absolutely dependent on mitochondrial transcription factor B2 (TFB2M). POLRMT/TFB2M-dependent transcription was inhibited by concentrations of mitochondrial transcription factor A (TFAM) stoichiometric with the transcription template, a condition that activates transcription from the light-strand promoter (LSP) in vitro. Domains of TFAM required for LSP activation were also required for HSP2 repression, whereas other mtDNA binding proteins failed to alter transcriptional output. Binding sites for TFAM were located on both sides of the start site of transcription from HSP2, suggesting that TFAM binding interferes with POLRMT and/or TFB2M binding. Consistent with a competitive bindingmodel for TFAMrepression of HSP2, the impact of TFAM concentration on HSP2 transcription was diminished by elevating the POLRMT and TFB2M concentrations. In the context of our previous studies of LSP and HSP1, it is now clear that three promoters exist in human mtDNA. Each promoter has a unique requirement for and/or response to the level of TFAM present, thus implying far greater complexity in the regulation of mammalian mitochondrial transcription than recognized to date
    corecore