26 research outputs found

    Priming and shifting of task set

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D206026 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Are there control processes, and (if so) can they be studied?

    No full text
    Generally, so-called control processes are thought to be necessary when we must perform one out of several competing actions. Some examples include performance of a less well-practiced action instead of a well-practiced one (prepotency); learning a new action (novelty); and rapidly switching from one action to another (task-switching). While it certainly is difficult to perform the desired action in these circumstances, it is less clear that a separate set of processes (e.g., control processes) are necessary to explain the observed behavior. Another way to approach the study of control processes is to investigate physiological dependent measures (e.g., electrophysiological or neuroimaging measures). Although these offer another avenue of inquiry into control processes, they have yet to furnish unambiguous evidence that control processes exist. While this might suggest that there are no control processes, it is also possible that our methods are insufficiently sensitive to measure control processes. We have investigated this latter possibility using tasks that are neuroanatomically distinct, though within the same modality (vision). This approach did not yield evidence for a separable set of control processes. However, recent works using a task-switching paradigm in which subjects switch between a visual and an auditory task suggest that switching both task and modality may be importantly different than switching task within a given modality. This may represent a way forward in the study of control processes

    The brain uses single-trial multisensory memories to discriminate without awareness.

    No full text
    Multisensory experiences enhance perceptions and facilitate memory retrieval processes, even when only unisensory information is available for accessing such memories. Using fMRI, we identified human brain regions involved in discriminating visual stimuli according to past multisensory vs. unisensory experiences. Subjects performed a completely orthogonal task, discriminating repeated from initial image presentations intermixed within a continuous recognition task. Half of initial presentations were multisensory, and all repetitions were exclusively visual. Despite only single-trial exposures to initial image presentations, accuracy in indicating image repetitions was significantly improved by past auditory-visual multisensory experiences over images only encountered visually. Similarly, regions within the lateral-occipital complex-areas typically associated with visual object recognition processes-were more active to visual stimuli with multisensory than unisensory pasts. Additional differential responses were observed in the anterior cingulate and frontal cortices. Multisensory experiences are registered by the brain even when of no immediate behavioral relevance and can be used to categorize memories. These data reveal the functional efficacy of multisensory processing

    The costs of crossing paths and switching tasks between audition and vision.

    No full text
    Switching from one functional or cognitive operation to another is thought to rely on executive/control processes. The efficacy of these processes may depend on the extent of overlap between neural circuitry mediating the different tasks; more effective task preparation (and by extension smaller switch costs) is achieved when this overlap is small. We investigated the performance costs associated with switching tasks and/or switching sensory modalities. Participants discriminated either the identity or spatial location of objects that were presented either visually or acoustically. Switch costs between tasks were significantly smaller when the sensory modality of the task switched versus when it repeated. This was the case irrespective of whether the pre-trial cue informed participants only of the upcoming task, but not sensory modality (Experiment 1) or whether the pre-trial cue was informative about both the upcoming task and sensory modality (Experiment 2). In addition, in both experiments switch costs between the senses were positively correlated when the sensory modality of the task repeated across trials and not when it switched. The collective evidence supports the independence of control processes mediating task switching and modality switching and also the hypothesis that switch costs reflect competitive interference between neural circuits

    The costs of crossing paths and switching tasks between audition and vision

    No full text
    Switching from one functional or cognitive operation to another is thought to rely on executive/control processes. The efficacy of these processes may depend on the extent of overlap between neural circuitry mediating the different tasks; more effective task preparation (and by extension smaller switch costs) is achieved when this overlap is small. We investigated the performance costs associated with switchingtasks and/or switching sensory modalities. Participants discriminated either the identity or spatial location of objects that were presented either visually or acoustically. Switch costs between tasks were significantly smaller when the sensory modality of the task switched versus when it repeated. This was the case irrespective of whether the pre-trial cue informed participants only of the upcoming task, but not sensory modality (Experiment 1) or whether the pre-trial cue was informative about both the upcoming task and sensory modality (Experiment 2). In addition, in both experiments switch costs between the senses were positively correlated when the sensory modality of the task repeated across trials and not when it switched. The collective evidence supports the independence of control processes mediating taskswitching and modality switching and also the hypothesis that switch costs reflect competitive interference between neural circuits

    Survivable information storage systems

    No full text

    Fatigue in Gulf War Illness is associated with tonically high activation in the executive control network

    No full text
    Gulf War Illness (GWI) is a chronic, multi-symptom illness that affects approximately 25% of Gulf veterans, with cognitive fatigue as one of its primary symptoms. Here, we investigated the neural networks associated with cognitive fatigue in GWI by asking 35 veterans with GWI and 25 healthy control subjects to perform a series of fatiguing tasks while in the MRI scanner. Two types of cognitive fatigue were assessed: state fatigue, which is the fatigue that developed as the tasks were completed, and trait fatigue, or one's propensity to experience fatigue when assessed over several weeks. Our results showed that the neural networks associated with state and trait fatigue differed. Irrespective of group, the network underlying trait fatigue included areas associated with memory whereas the neural network associated with state fatigue included key areas of a fronto-striatal-thalamic circuit that has been implicated in fatigue in other populations. As in other investigations of fatigue, the caudate of the basal ganglia was implicated in fatigue. Furthermore, individuals with GWI showed greater activation than the HC group in frontal and parietal areas for the less difficult task. This suggests that an inability to modulate brain activation as task demands change may underlie fatigue in GWI
    corecore