5 research outputs found

    Monte Carlo and Renormalization Group Effective Potentials in Scalar Field Theories

    Get PDF
    We study constraint effective potentials for various strongly interacting ϕ4\phi^4 theories. Renormalization group (RG) equations for these quantities are discussed and a heuristic development of a commonly used RG approximation is presented which stresses the relationships among the loop expansion, the Schwinger-Dyson method and the renormalization group approach. We extend the standard RG treatment to account explicitly for finite lattice effects. Constraint effective potentials are then evaluated using Monte Carlo (MC) techniques and careful comparisons are made with RG calculations. Explicit treatment of finite lattice effects is found to be essential in achieving quantitative agreement with the MC effective potentials. Excellent agreement is demonstrated for d=3d=3 and d=4d=4, O(1) and O(2) cases in both symmetric and broken phases.Comment: 16 pages, 4 figures appended to end of this fil

    Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics

    Full text link
    We extend the exact multilocal renormalization group (RG) method to study the flow of the effective action functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilocal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given order in the local part. The method is illustrated on the O(N) model by straightforwardly recovering the η\eta exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical exponent zz are recovered and several new results are obtained. The equilibrium two-point scaling functions are obtained. The nonequilibrium, finite momentum, two-time t,tt,t' response and correlations are computed. They are shown to exhibit scaling forms, characterized by novel exponents λRλC\lambda_R \neq \lambda_C, as well as universal scaling functions that we compute. The fluctuation dissipation ratio is found to be non trivial and of the form X(qz(tt),t/t)X(q^z (t-t'), t/t'). Analogies and differences with pure critical models are discussed.Comment: 33 pages, RevTe

    Nonperturbative renormalization group approach to frustrated magnets

    Full text link
    This article is devoted to the study of the critical properties of classical XY and Heisenberg frustrated magnets in three dimensions. We first analyze the experimental and numerical situations. We show that the unusual behaviors encountered in these systems, typically nonuniversal scaling, are hardly compatible with the hypothesis of a second order phase transition. We then review the various perturbative and early nonperturbative approaches used to investigate these systems. We argue that none of them provides a completely satisfactory description of the three-dimensional critical behavior. We then recall the principles of the nonperturbative approach - the effective average action method - that we have used to investigate the physics of frustrated magnets. First, we recall the treatment of the unfrustrated - O(N) - case with this method. This allows to introduce its technical aspects. Then, we show how this method unables to clarify most of the problems encountered in the previous theoretical descriptions of frustrated magnets. Firstly, we get an explanation of the long-standing mismatch between different perturbative approaches which consists in a nonperturbative mechanism of annihilation of fixed points between two and three dimensions. Secondly, we get a coherent picture of the physics of frustrated magnets in qualitative and (semi-) quantitative agreement with the numerical and experimental results. The central feature that emerges from our approach is the existence of scaling behaviors without fixed or pseudo-fixed point and that relies on a slowing-down of the renormalization group flow in a whole region in the coupling constants space. This phenomenon allows to explain the occurence of generic weak first order behaviors and to understand the absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure

    Equivalence of local potential approximations

    No full text
    In recent papers it has been noted that the local potential approximation of the Legendre and Wilson-Polchinski flow equations give, within numerical error, identical results for a range of exponents and Wilson-Fisher fixed points in three dimensions, providing a certain "optimised" cutoff is used for the Legendre flow equation. Here we point out that this is a consequence of an exact map between the two equations, which is nothing other than the exact reduction of the functional map that exists between the two exact renormalization groups. We note also that the optimised cutoff does not allow a derivative expansion beyond second order

    Optimized renormalization group flows

    Get PDF
    We study the optimization of exact renormalization group ~ERG! flows. We explain why the convergence of approximate solutions towards the physical theory is optimized by appropriate choices of the regularization. We consider specific optimized regulators for bosonic and fermionic fields and compare the optimized ERG flows with generic ones. This is done up to second order in the derivative expansion at both vanishing and nonvanishing temperature. We find that optimized flows at finite temperature factorize. This corresponds to the disentangling of thermal and quantum fluctuations. A similar factorization is found at second order in the derivative expansion. The corresponding optimized flow for a ‘‘proper-time renormalization group’’ is also provided to leading order in the derivative expansion
    corecore