5 research outputs found
Monte Carlo and Renormalization Group Effective Potentials in Scalar Field Theories
We study constraint effective potentials for various strongly interacting
theories. Renormalization group (RG) equations for these quantities
are discussed and a heuristic development of a commonly used RG approximation
is presented which stresses the relationships among the loop expansion, the
Schwinger-Dyson method and the renormalization group approach. We extend the
standard RG treatment to account explicitly for finite lattice effects.
Constraint effective potentials are then evaluated using Monte Carlo (MC)
techniques and careful comparisons are made with RG calculations. Explicit
treatment of finite lattice effects is found to be essential in achieving
quantitative agreement with the MC effective potentials. Excellent agreement is
demonstrated for and , O(1) and O(2) cases in both symmetric and
broken phases.Comment: 16 pages, 4 figures appended to end of this fil
Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics
We extend the exact multilocal renormalization group (RG) method to study the
flow of the effective action functional. This important physical quantity
satisfies an exact RG equation which is then expanded in multilocal components.
Integrating the nonlocal parts yields a closed exact RG equation for the local
part, to a given order in the local part. The method is illustrated on the O(N)
model by straightforwardly recovering the exponent and scaling
functions. Then it is applied to study the glass phase of the Cardy-Ostlund,
random phase sine Gordon model near the glass transition temperature. The
static correlations and equilibrium dynamical exponent are recovered and
several new results are obtained. The equilibrium two-point scaling functions
are obtained. The nonequilibrium, finite momentum, two-time response and
correlations are computed. They are shown to exhibit scaling forms,
characterized by novel exponents , as well as
universal scaling functions that we compute. The fluctuation dissipation ratio
is found to be non trivial and of the form . Analogies and
differences with pure critical models are discussed.Comment: 33 pages, RevTe
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
Equivalence of local potential approximations
In recent papers it has been noted that the local potential approximation of the Legendre and Wilson-Polchinski flow equations give, within numerical error, identical results for a range of exponents and Wilson-Fisher fixed points in three dimensions, providing a certain "optimised" cutoff is used for the Legendre flow equation. Here we point out that this is a consequence of an exact map between the two equations, which is nothing other than the exact reduction of the functional map that exists between the two exact renormalization groups. We note also that the optimised cutoff does not allow a derivative expansion beyond second order
Optimized renormalization group flows
We study the optimization of exact renormalization group ~ERG! flows. We explain why the convergence of approximate solutions towards the physical theory is optimized by appropriate choices of the regularization. We consider specific optimized regulators for bosonic and fermionic fields and compare the optimized ERG flows with generic ones. This is done up to second order in the derivative expansion at both vanishing and nonvanishing temperature. We find that optimized flows at finite temperature factorize. This corresponds to the disentangling of thermal and quantum fluctuations. A similar factorization is found at second order in the derivative expansion. The corresponding optimized flow for a ‘‘proper-time renormalization group’’ is also provided to leading order in the derivative expansion
