768 research outputs found
A pilot randomized controlled trial of a self-management group intervention for people with early-stage dementia (The SMART study)
BACKGROUND: Self-management equips people to manage the symptoms and lifestyle changes that occur in long-term health conditions; however, there is limited evidence about its effectiveness for people with early-stage dementia. This pilot randomized controlled trial (RCT) explored the feasibility of a self-management intervention for people with early-stage dementia. METHODS: The participants were people with early-stage dementia (n = 24) and for each participant a caregiver also took part. Participants were randomly allocated to either an eight-week self-management group intervention or treatment as usual (TAU). Assessments were conducted at baseline, three months and six months post-randomization by a researcher blind to group allocation. The primary outcome measure was self-efficacy score at three months. RESULTS: Thirteen people with dementia were randomized to the intervention and 11 to TAU. Two groups were run, the first consisting of six people with dementia and the second of seven people with dementia. There was a small positive effect on self-efficacy with the intervention group showing gains in self-efficacy compared to the TAU group at three months (d = 0.35), and this was maintained at six months (d = 0.23). In terms of intervention acceptability, attrition was minimal, adherence was good, and satisfaction ratings were high. Feedback from participants was analyzed with content analysis. The findings suggest the positive aspects of the intervention were that it fostered independence and reciprocity, promoted social support, offered information, and provided clinician support. CONCLUSIONS: This study has provided preliminary evidence that self-management may be beneficial for people with early-stage dementia.Welsh National Institute for Social Care and Health Research Health Award 201
Recommended from our members
Weldability of polycrystalline aluminides. Final report
When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen cracking. Magnetic arc oscillation and weld pool inoculation were implemented to refine the fusion zone microstructure in iron aluminide alloy FA-129 weldments. Magnetic arc oscillation effectively refined the fusion zone microstructure, and slow strain rate tensile tests showed fine-grained microstructures to be less susceptible to hydrogen cracking. However, magnetic arc oscillation was found to be suitable only for well-controlled fabrication environments. Weld pool inoculation offers a potentially more robust refinement method. Titanium inoculation was also shown to effectively refined the fusion zone microstructure, but weldment properties were not improved using this refinement method. The effect of titanium on the size, shape and distribution of the second phase particles in the fusion zone appears to be the cause of the observed decrease in weldment properties
Recommended from our members
Determinants of species richness in the Park Grass experiment
The Park Grass Experiment at Rothamsted in southeast England was started in 1856, making it the longest-running experiment in plant ecology anywhere in the world. Experimental inputs include a range of fertilizers (nitrogen, phosphorus, potassium, and organic manures) applied annually, with lime applied occasionally, and these have led to an increase in biomass and, where nitrogen was applied in the form of ammonium sulfate, to substantial decreases in soil pH. The number of species per plot varies from three to 44 per 200 m2, affording a unique opportunity to study the determinants of plant species richness and to estimate the effect sizes attributable to different factors. The response of species richness to biomass depends on the amount and type of nitrogen applied; richness declined monotonically with increasing biomass on plots receiving no nitrogen or receiving nitrogen in the form of sodium nitrate, but there was no relationship between species richness and biomass on plots acidified by ammonium sulfate application. The response to lime also depended on the type of nitrogen applied; there was no relationship between lime treatment and species richness, except in plots receiving nitrogen in the form of ammonium sulfate, where species richness increased sharply with increasing soil pH. The addition of phosphorus reduced species richness, and application of potassium along with phosphorus reduced species richness further, but the biggest negative effects were when nitrogen and phosphorus were applied together. The analysis demonstrates how multiple factors contribute to the observed diversity patterns and how environmental regulation of species pools can operate at the same spatial and temporal scale as biomass effects
Phase coexistence of gradient Gibbs states
We consider the (scalar) gradient fields --with denoting
the nearest-neighbor edges in --that are distributed according to the
Gibbs measure proportional to \texte^{-\beta H(\eta)}\nu(\textd\eta). Here
is the Hamiltonian, is a symmetric potential,
is the inverse temperature, and is the Lebesgue measure on the linear
space defined by imposing the loop condition
for each plaquette
in . For convex , Funaki and Spohn have shown that
ergodic infinite-volume Gibbs measures are characterized by their tilt. We
describe a mechanism by which the gradient Gibbs measures with non-convex
undergo a structural, order-disorder phase transition at some intermediate
value of inverse temperature . At the transition point, there are at
least two distinct gradient measures with zero tilt, i.e., .Comment: 3 figs, PTRF style files include
Localized f electrons in CexLa1-xRhIn5: dHvA Measurements
Measurements of the de Haas-van Alphen effect in CexLa1-xRhIn5 reveal that
the Ce 4f electrons remain localized for all x, with the mass enhancement and
progressive loss of one spin from the de Haas-van Alphen signal resulting from
spin fluctuation effects. This behavior may be typical of antiferromagnetic
heavy fermion compounds, inspite of the fact that the 4f electron localization
in CeRhIn5 is driven, in part, by a spin-density wave instability.Comment: 4 pages, 4 figures, submitted to PR
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Using the past to constrain the future: how the palaeorecord can improve estimates of global warming
Climate sensitivity is defined as the change in global mean equilibrium
temperature after a doubling of atmospheric CO2 concentration and provides a
simple measure of global warming. An early estimate of climate sensitivity,
1.5-4.5{\deg}C, has changed little subsequently, including the latest
assessment by the Intergovernmental Panel on Climate Change.
The persistence of such large uncertainties in this simple measure casts
doubt on our understanding of the mechanisms of climate change and our ability
to predict the response of the climate system to future perturbations. This has
motivated continued attempts to constrain the range with climate data, alone or
in conjunction with models. The majority of studies use data from the
instrumental period (post-1850) but recent work has made use of information
about the large climate changes experienced in the geological past.
In this review, we first outline approaches that estimate climate sensitivity
using instrumental climate observations and then summarise attempts to use the
record of climate change on geological timescales. We examine the limitations
of these studies and suggest ways in which the power of the palaeoclimate
record could be better used to reduce uncertainties in our predictions of
climate sensitivity.Comment: The final, definitive version of this paper has been published in
Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All
rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
- …