173 research outputs found
On evolutionary system identification with applications to nonlinear benchmarks
This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the ‘no-free-lunch’ theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box)
Child and parental sleep in young children with epilepsy: A population-based case-control study
Objective:
To determine the prevalence of parent‐reported sleep problems in young children with epilepsy and their parents, and to compare findings with those in a non–epilepsy‐related neurodisability (neurodevelopmental/neurological difficulties) group.
Method:
Parents of young children (1–7 years) with epilepsy (n = 48 [91% ascertainment]) completed the Child Sleep Habits Questionnaire (CSHQ). Parents (mothers and fathers) also completed the Pittsburgh Sleep Quality Index (PSQI) and the Iowa Fatigue Scale (IFS) in relation to their own functioning. The responses of parents of children with epilepsy were compared with parents of developmental‐, age‐, and gender‐matched children with nonepilepsy‐related neurodisability (n = 48).
Results:
There was not a significant difference in the proportion of children with epilepsy and the children with neurodisability scoring in the at‐risk range on the CSHQ (81% vs. 71% respectively) (p = 0.232). 62% of mothers and 44% of fathers of children with epilepsy had ‘poor quality sleep’ on the PSQI; there was not a significant difference between mothers of children with epilepsy and those of children with neurodisability (p = 0.526) or IFS (p = 0.245) total scores. However, mothers of children with epilepsy had significantly more difficulties on the productivity subscale of the IFS (p = 0.004). There were no significant differences between fathers’ scores on either measure. In the epilepsy group, child behavioral problems (p = 0.001) were independently associated with child sleep difficulties and maternal mental health problems were associated with parental sleep difficulties (p = 0.04) and fatigue (p = 0.018).
Significance:
Young children with epilepsy and their parents have a high rate of sleep difficulties. There is a need to develop effective interventions for this population, taking into consideration of the role of child behavioral problems and parental mental health difficulties
Mode-Locking in Driven Disordered Systems as a Boundary-Value Problem
We study mode-locking in disordered media as a boundary-value problem.
Focusing on the simplest class of mode-locking models which consists of a
single driven overdamped degree-of-freedom, we develop an analytical method to
obtain the shape of the Arnol'd tongues in the regime of low ac-driving
amplitude or high ac-driving frequency. The method is exact for a scalloped
pinning potential and easily adapted to other pinning potentials. It is
complementary to the analysis based on the well-known Shapiro's argument that
holds in the perturbative regime of large driving amplitudes or low driving
frequency, where the effect of pinning is weak.Comment: 6 pages, 7 figures, RevTeX, Submitte
Volumetric texture description and discriminant feature selection for MRI
This paper considers the problem of classification of Magnetic Resonance Images using 2D and 3D texture measures. Joint statistics such as co-occurrence matrices are common for analysing texture in 2D since they are simple and effective to implement. However, the computational complexity can be prohibitive especially in 3D. In this work, we develop a texture classification strategy by a sub-band filtering technique that can be extended to 3D. We further propose a feature selection technique based on the Bhattacharyya distance measure that reduces the number of features required for the classification by selecting a set of discriminant features conditioned on a set training texture samples. We describe and illustrate the methodology by quantitatively analysing a series of images: 2D synthetic phantom, 2D natural textures, and MRI of human knees
Dual Vortex Theory of Strongly Interacting Electrons: Non-Fermi Liquid to the (Hard) Core
As discovered in the quantum Hall effect, a very effective way for
strongly-repulsive electrons to minimize their potential energy is to aquire
non-zero relative angular momentum. We pursue this mechanism for interacting
two-dimensional electrons in zero magnetic field, by employing a representation
of the electrons as composite bosons interacting with a Chern-Simons gauge
field. This enables us to construct a dual description in which the fundamental
constituents are vortices in the auxiliary boson fields. The resulting
formalism embraces a cornucopia of possible phases. Remarkably,
superconductivity is a generic feature, while the Fermi liquid is not --
prompting us to conjecture that such a state may not be possible when the
interactions are sufficiently strong. Many aspects of our earlier discussions
of the nodal liquid and spin-charge separation find surprising incarnations in
this new framework.Comment: Modified dicussion of the hard-core model, correcting several
mistake
Clinical phenotype and mortality in patients with idiopathic small bowel villous atrophy: a dual-centre international study
Objective
Causes of small-bowel villous atrophy (VA) include coeliac disease (CD), its complications and other rare non-coeliac enteropathies. However, forms of VA of unknown aetiology may also exist. We defined them as idiopathic VA (IVA). To retrospectively classify the largest cohort of IVA patients and compare their natural history with CD.
Methods
Notes of 76 IVA patients attending two tertiary centres between January 2000 and March 2019 were retrospectively reviewed. CD, its complications and all the known causes of VA were excluded in all of them. Persistence of VA during follow-up and lymphoproliferative features were used to retrospectively classify IVA, as follows. Group 1: IVA with spontaneous histological recovery (50 patients). Group 2: persistent IVA without lymphoproliferative features (14 patients). Group 3: persistent IVA with lymphoproliferative features (12 patients). Survival was compared between IVA groups and 1114 coeliac patients. HLA was compared between IVA patients, coeliac patients and appropriate controls.
Results
Five-year survival was 96% in IVA group 1, 100% in IVA group 2, 27% in IVA group 3 and 97% in CD. On a multivariate analysis hypoalbuminemia (P = 0.002) and age at diagnosis (P = 0.04) predicted mortality in IVA. Group 2 showed association with HLA DQB1*0301 and DQB1*06.
Conclusion
IVA consists of three groups of enteropathies with distinct clinical phenotypes and prognoses. Mortality in IVA is higher than in CD and mainly due to lymphoproliferative conditions necessitating more aggressive therapies
The PanCam Instrument for the ExoMars Rover
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe
Regulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axis
Disturbances in the serotonin (5-HT) system is the neurobiological abnormality most consistently associated with suicide. Hyperactivity of the hypothalmic-pituitary-adrenal (HPA) axis is also described in suicide victims. The HPA axis is the classical neuroendocrine system that responds to stress and whose final product, corticosteroids, targets components of the limbic system, particularly the hippocampus. We will review resulsts from animal studies that point to the possibility that many of the 5-HT receptor changes observed in suicide brains may be a result of, or may be worsened by, the HPA overactivity that may be present in some suicide victims. The results of these studies can be summarized as follows: (1) chronic unpredictable stress produces high corticosteroid levels in rats; (2) chronic stress also results in changes in specific 5-HT receptors (increases in cortical 5-HT2A and decreases in hipocampal 5-HT1A and 5-HT1B); (3) chronic antidepressant administration prevents many of the 5-HT receptor changes observed after stress; and (4) chronic antidepressant administration reverses the overactivity of the HPA axis. If indeed 5-HT receptors have a partial role in controlling affective states, then their modulation by corticosteroids provides a potential mechanism by which these hormones may regulate mood. These data may also provide a biological understanding of how stressful events may increase the risk for suicide in vulnerable individuals and may help us elucidate the neurobiological underpinnings of treatment resistance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73437/1/j.1749-6632.1997.tb52357.x.pd
Glastir Monitoring & Evaluation Programme. Second year annual report
What is the purpose of Glastir Monitoring and Evaluation Programme?
Glastir is the main scheme by which the Welsh Government pays for environmental goods and services whilst the Glastir Monitoring and Evaluation Programme (GMEP) evaluates the scheme’s success. Commissioning of the monitoring programme in parallel with the launch of the Glastir scheme provides fast feedback and means payments can be modified to increase effectiveness. The Glastir scheme is jointly funded by the Welsh Government (through the Rural Development Plan) and the EU. GMEP will also support a wide range of other national and international reporting requirements.
What is the GMEP approach?
GMEP collects evidence for the 6 intended outcomes from the Glastir scheme which are focussed on climate change, water and soil quality, biodiversity, landscape, access and historic environment, woodland creation and management. Activities include; a national rolling monitoring programme of 1km squares; new analysis of long term data from other schemes combining with GMEP data where possible; modelling to estimate future outcomes so that adjustments can be made to maximise impact of payments; surveys to assess wider socio-economic benefits; and development of novel technologies to increase detection and efficiency of future assessments.
How has GMEP progressed in this 2nd year?
90 GMEP squares were surveyed in Year 2 to add to the 60 completed in Year 1 resulting in 50% of the 300 GMEP survey squares now being completed. Squares will be revisited on a 4 year cycle providing evidence of change in response to Glastir and other pressures such as changing economics of the farm business, climate change and air pollution. This first survey cycle collects the baseline against which future changes will be assessed. This is important as GMEP work this year has demonstrated land coming into the scheme is different in some respects to land outside the scheme. Therefore, future analysis to detect impact of Glastir will be made both against the national backdrop from land outside the scheme and this baseline data from land in scheme. A wide range of analyses of longterm data has been completed for all Glastir Outcomes with the exception of landscape quality and historic features condition for which limited data is available. This has involved combining data with 2013/14 GMEP data when methods allow. Overall analysis of long term data indicates one of stability but with little evidence of improvement with the exception of headwater quality, greenhouse gas emissions and woodland area for which there has been improvement over the last 20 years. Some headline statistics include: 51% of historic features in excellent or sound condition; two thirds of public rights of way fully open and accessible; improvement in hedgerow management with 85% surveyed cut in the last 3 years but < 1% recently planted; 91% of streams had some level of modification but 60% retained good ecological quality; no change topsoil carbon content over last 25 years.
What is innovative?
GMEP has developed various new metrics to allow for more streamlined reporting in the future. For example a new Priority Bird species Index for Wales which combines data from 35 species indicates at least half have stable or increasing populations. The new GMEP Visual Quality Landscape Index has been tested involving over 2600 respondents. Results have demonstrated its value as an objective and repeatable method for quantifying change in visual landscape quality. A new unified peat map for Wales has been developed which has been passed to Glastir Contract Managers to improve targeting of payments when negotiating Glastir contracts. An estimate of peat soil contribution to current greenhouse gas emissions due to human modification has been calculated. Models have allowed quantification of land area helping to mitigate rainfall runoff. We are using new molecular tools to explore the effects of Glastir on soil organisms and satellite technologies to quantify e.g. small woody features and landcover change. Finally we are using a community approach to develop a consensus on how to define and report change in High Nature Value Farmland which will be reported in the Year 3 GMEP report
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
- …