335 research outputs found

    The energy production rate & the generation spectrum of UHECRs

    Full text link
    We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d\dot{n} /dE\propto E^-\alpha (1+z)^m, our results are accurate at high energy, E>10^18.7 eV, to better than 15%, providing a simple and straightforward method for inferring d\dot{n}/dE from the observed flux at E. We show that current measurements of the UHECR spectrum, including the latest Auger data, imply E^2d\dot{n}/dE(z=0)=(0.45\pm0.15)(\alpha-1) 10^44 erg Mpc^-3 yr^-1 at E<10^19.5 eV with \alpha roughly confined to 2\lesseq\alpha<2.7. The uncertainty is dominated by the systematic and statistic errors in the experimental determination of individual CR event energy, (\Delta E/E)_{sys} (\Delta E/E)_{stat} ~20%. At lower energy, d\dot{n}/dE is uncertain due to the unknown Galactic contribution. Simple models in which \alpha\simeq 2 and the transition from Galactic to extra-Galactic sources takes place at the "ankle", E ~10^19 eV, are consistent with the data. Models in which the transition occurs at lower energies require a high degree of fine tuning and a steep spectrum, \alpha\simeq 2.7, which is disfavored by the data. We point out that in the absence of accurate composition measurements, the (all particle) energy spectrum alone cannot be used to infer the detailed spectral shapes of the Galactic and extra-Galactic contributions.Comment: 9 pages, 11 figures, minor revision

    Axion-like particles as ultra high energy cosmic rays?

    Full text link
    If Ultra High Energy Cosmic Rays (UHECRs) with E>4 10^{19} eV originate from BL Lacertae at cosmological distances as suggested by recent studies, the absence of the GZK cutoff can not be reconciled with Standard-Model particle properties. Axions would escape the GZK cutoff, but even the coherent conversion and back-conversion between photons and axions in large-scale magnetic fields is not enough to produce the required flux. However, one may construct models of other novel (pseudo)scalar neutral particles with properties that would allow for sufficient rates of particle production in the source and shower production in the atmosphere to explain the observations. As an explicit example for such particles we consider SUSY models with light sgoldstinos.Comment: 5 pages, 2 postscript figures, ref. adde

    Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources?

    Get PDF
    We demonstrate by numerical flux calculations that neutrino beams producing the observed highest energy cosmic rays by weak interactions with the relic neutrino background require a non-uniform distribution of sources. Such sources have to accelerate protons at least up to 10^{23} eV, have to be opaque to their primary protons, and should emit the secondary photons unavoidably produced together with the neutrinos only in the sub-MeV region to avoid conflict with the diffuse gamma-ray background measured by the EGRET experiment. Even if such a source class exists, the resulting large uncertainties in the parameters involved in this scenario does currently not allow to extract any meaningful information on absolute neutrino masses.Comment: 6 pages, 4 figures, RevTeX styl

    Large Electric Dipole Moments of Heavy Neutrinos

    Get PDF
    In many models of CP violation, the electric dipole moment (EDM) of a heavy charged or neutral lepton could be very large. We present an explicit model in which a heavy neutrino EDM can be as large as 101610^{-16} e-cm, or even a factor of ten larger if fine-tuning is allowed, and use an effective field theory argument to show that this result is fairly robust. We then look at the production cross section for these neutrinos, and by rederiving the Bethe-Block formula, show that they could leave an ionization track. It is then noted that the first signature of heavy neutrinos with a large EDM would come from e+eNˉNγe^+e^-\to \bar{N}N\gamma, leading to a very large rate for single photon plus missing energy events, and the rate and angular distribution are found. Finally, we look at some astrophysical consequences, including whether these neutrinos could constitute the UHE cosmic rays and whether their decays in the early universe could generate a net lepton asymmetry.Comment: 22 pages, 9 figure

    Ultra-High Energy Neutrino Fluxes and Their Constraints

    Full text link
    Applying our recently developed propagation code we review extragalactic neutrino fluxes above 10^{14} eV in various scenarios and how they are constrained by current data. We specifically identify scenarios in which the cosmogenic neutrino flux, produced by pion production of ultra high energy cosmic rays outside their sources, is considerably higher than the "Waxman-Bahcall bound". This is easy to achieve for sources with hard injection spectra and luminosities that were higher in the past. Such fluxes would significantly increase the chances to detect ultra-high energy neutrinos with experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    Extensive Air Showers from Ultra High Energy Gluinos

    Get PDF
    We study the proposal that the cosmic ray primaries above the Greisen-Zatsepin-Kuzmin (GZK) cutoff are gluino-containing hadrons (g~\tilde g-hadrons). We describe the interaction of g~\tilde g-hadrons with nucleons in the framework of the Gribov-Regge approach using a modified version of the hadronic interaction model QGSJET for the generations of Extensive Air Showers (EAS). There are two mass windows marginally allowed for gluinos: m_{\tilde g}\lsim 3 GeV and 25\lsim m_{\tilde g}\lsim 35 GeV. Gluino-containing hadrons corresponding to the second window produce EAS very different from the observed ones. Light g~\tilde g-hadrons corresponding to the first gluino window produce EAS similar to those initiated by protons, and only future detectors can marginally distinguish them. We propose a beam-dump accelerator experiment to search for g~\tilde g-hadrons in this mass window. We emphasize the importance of this experiment: it can discover (or exclude) the light gluino and its role as a cosmic ray primary at ultra high energies.Comment: 27 pages latex, 13 eps figure

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore