2,339 research outputs found
factorization of exclusive processes
We prove factorization theorem in perturbative QCD (PQCD) for exclusive
processes by considering and . The relevant form factors are expressed as the convolution of hard
amplitudes with two-parton meson wave functions in the impact parameter
space, being conjugate to the parton transverse momenta . The point is
that on-shell valence partons carry longitudinal momenta initially, and acquire
through collinear gluon exchanges. The -dependent two-parton wave
functions with an appropriate path for the Wilson links are gauge-invariant.
The hard amplitudes, defined as the difference between the parton-level
diagrams of on-shell external particles and their collinear approximation, are
also gauge-invariant. We compare the predictions for two-body nonleptonic
meson decays derived from factorization (the PQCD approach) and from
collinear factorization (the QCD factorization approach).Comment: 11 pages, REVTEX, 5 figure
Generalized switching function model of modular multilevel converter
This paper presents a generalized switching function model of the modular multilevel converter (MMC) that can be used instead of MMC electromagnetic transient simulation model for full-scale simulations of high-voltage dc (HVDC) and flexible ac transmission systems (FACTS). The proposed method is computationally more efficient and numerically stable than its electromagnetic transient simulation counterpart, and it is applicable for wide range of studies, including ac and dc network faults. The proposed switching function model is packaged in a graphical form to suit various simulation platforms such as Simulink and PSCAD. The validity of the presented model is confirmed using simulation and its scalability has been demonstrated on MMC with 301 cells per arm, considering power reversal during normal operation and dc short circuit fault
Threshold resummation for exclusive B meson decays
We argue that double logarithmic corrections need to be
resumed in perturbative QCD factorization theorem for exclusive meson
decays, when the end-point region with a momentum fraction is
important. These double logarithms, being of the collinear origin, are absorbed
into a quark jet function, which is defined by a matrix element of a quark
field attached by a Wilson line. The factorization of the jet function from the
decay is proved to all orders. Threshold resummation for
the jet function leads to a universal, {\it i.e.}, process-independent, Sudakov
factor, whose qualitative behavior is analyzed and found to smear the end-point
singularities in heavy-to-light transition form factors.Comment: 10 pages, more details are include
Study on the Activity of PI3K/AKT, Death Receptor and 14-3-3 Mediated Signaling Pathways Regulating Hepatocyte Apoptosis during Rat Liver Regeneration
Studies have shown that apoptosis is closely related to the rat liver regeneration. To understand the mechanism of hepatocyte apoptosis during rat liver regeneration at the gene transcription level, the Rat Genome 230 2.0 Array was used to determine the expression changes of genes. Then the genes associated with cell apoptosis were searched by GO and NCBI databases, and cell apoptosis signaling pathways were searched by the database of QIAGEN and KEGG. Their signaling activities were calculated by spectral function E(t). The mechanism of hepatocyte apoptosis during rat liver regeneration was analyzed by Ingenuity Pathway Analysis 9.0 (IPA). The results showed that among the 27 signaling pathways regulating cell apoptosis, the E(t) values of Apoptosis signaling pathway and 14-3-3 mediated signaling pathway were significantly increased in the progression phase (6-72h after PH) of rat liver regeneration, and the E(t) values of hepatocyte apoptosis mediated by mitochondria rout were also significantly increased. The E(t) values of death receptor signaling pathway and PI3K/AKT branch of 14-3-3 mediated signaling pathway were significantly increased in the progression phase and the terminal phase (72-168h after PH) of rat liver regeneration, and the E(t) values of hepatocyte apoptosis mediated by cytomembrane route and nucleus route were also significantly increased. Conclusion: PI3K/AKT, death receptor and mitochondria branch played a key role in promoting cell apoptosis during rat liver regeneration
Branching ratios of decays in perturbative QCD approach
We study the rare decays , which can occur only via
annihilation type diagrams in the standard model. We calculate all of the four
modes, , in the framework of perturbative QCD approach
and give the branching ratios of the order about .Comment: 18 pages, 1 figure, Revte
Restoration of factorization for low hadron hadroproduction
We discuss the applicability of the factorization theorem to low-
hadron production in hadron-hadron collision in a simple toy model, which
involves only scalar particles and gluons. It has been shown that the
factorization for high- hadron hadroproduction is broken by soft gluons in
the Glauber region, which are exchanged among a transverse-momentum-dependent
(TMD) parton density and other subprocesses of the collision. We explain that
the contour of a loop momentum can be deformed away from the Glauber region at
low , so the above residual infrared divergence is factorized by means of
the standard eikonal approximation. The factorization is then restored in
the sense that a TMD parton density maintains its universality. Because the
resultant Glauber factor is independent of hadron flavors, experimental
constraints on its behavior are possible. The factorization can also be
restored for the transverse single-spin asymmetry in hadron-hadron collision at
low in a similar way, with the residual infrared divergence being
factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ
Branching ratio and CP asymmetry of decays in the perturbative QCD approach
In this paper, we calculate the decay rate and CP asymmetry of the decay in perturbative QCD approach with Sudakov resummation. Since
none of the quarks in final states is the same as those of the initial
meson, this decay can occur only via annihilation diagrams in the standard
model. Besides the current-current operators, the contributions from the QCD
and electroweak penguin operators are also taken into account. We find that (a)
the branching ratio is about ; (b) the penguin diagrams
dominate the total contribution; and (c) the direct CP asymmetry is small in
size: no more than ; but the mixing-induced CP asymmetry can be as large
as ten percent testable in the near future LHC-b experiments.Comment: 12 pages, 4 figures included, RevTe
Two-particle localization and antiresonance in disordered spin and qubit chains
We show that, in a system with defects, two-particle states may experience
destructive quantum interference, or antiresonance. It prevents an excitation
localized on a defect from decaying even where the decay is allowed by energy
conservation. The system studied is a qubit chain or an equivalent spin chain
with an anisotropic () exchange coupling in a magnetic field. The chain
has a defect with an excess on-site energy. It corresponds to a qubit with the
level spacing different from other qubits. We show that, because of the
interaction between excitations, a single defect may lead to multiple localized
states. The energy spectra and localization lengths are found for
two-excitation states. The localization of excitations facilitates the
operation of a quantum computer. Analytical results for strongly anisotropic
coupling are confirmed by numerical studies.Comment: Updated version, 13 pages, 5 figures To appear in Phys. Rev. B (2003
Scale Setting in QCD and the Momentum Flow in Feynman Diagrams
We present a formalism to evaluate QCD diagrams with a single virtual gluon
using a running coupling constant at the vertices. This method, which
corresponds to an all-order resummation of certain terms in a perturbative
series, provides a description of the momentum flow through the gluon
propagator. It can be viewed as a generalization of the scale-setting
prescription of Brodsky, Lepage and Mackenzie to all orders in perturbation
theory. In particular, the approach can be used to investigate why in some
cases the ``typical'' momenta in a loop diagram are different from the
``natural'' scale of the process. It offers an intuitive understanding of the
appearance of infrared renormalons in perturbation theory and their connection
to the rate of convergence of a perturbative series. Moreover, it allows one to
separate short- and long-distance contributions by introducing a hard
factorization scale. Several applications to one- and two-scale problems are
discussed in detail.Comment: eqs.(51) and (83) corrected, minor typographic changes mad
Double exchange model on triangular lattice: non-coplanar spin configuration and phase transition near quarter filling
Unconventional anomalous Hall effect in frustrated pyrochlore oxides is
originated from spin chirality of non-coplanar localized spins, which can also
be induced by the competition between ferromagnetic (FM) double exchange
interaction and antiferromagnetic superexchange interaction .
Here truncated polynomial expansion method and Monte Carlo simulation are
adopted to investigate the above model on two-dimensional triangular lattice.
We discuss the influence of the range of FM-type spin-spin correlation and
strong electron-spin correlation on the truncation error of spin-spin
correlation near quarter filling. Two peaks of the probability distribution of
spin-spin correlation in non-coplanar spin configuration clearly show that
non-coplanar spin configuration is an intermediate phase between FM and
120-degree spin phase. Near quarter filling, there is a phase transition from
FM into non-coplanar and further into 120-degree spin phase when
continually increases. Finally the effect of temperature on magnetic structure
is discussed.Comment: 10 pages, 5 figure
- …