18 research outputs found

    Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation

    Full text link
    Acoustic emission is used here to study melting and solidification of embedded indium particles in the size range of 0.2 to 3 um in diameter and to show that dislocation generation occurs in the aluminum matrix to accommodate a 2.5% volume change. The volume averaged acoustic energy produced by indium particle melting is similar to that reported for bainite formation upon continuous cooling. A mechanism of prismatic loop generation is proposed to accommodate the volume change and an upper limit to the geometrically necessary increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the Al-17In alloy. Thermomechanical processing is also used to change the size and distribution of the indium particles within the aluminum matrix. Dislocation generation with accompanied acoustic emission occurs when the melting indium particles are associated with grain boundaries or upon solidification where the solid-liquid interfaces act as free surfaces to facilitate dislocation generation. Acoustic emission is not observed for indium particles that require super heating and exhibit elevated melting temperatures. The acoustic emission work corroborates previously proposed relaxation mechanisms from prior internal friction studies and that the superheat observed for melting of these micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces - Recent Progress and Future Study" TMS 201

    The Effect of Matrix Microstructure on Cyclic Response and Fatigue Behavior of Particle-reinforced 2219 Aluminum Part II

    No full text
    The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ′ strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles. © 1995 The Minerals, Metals & Material Society

    Recrystallization and Grain Growth Phenomena in a Particle-reinforced Aluminum Composite

    No full text
    Recrystallization and grain growth in a 2219/TiC/15p composite were investigated as functions of the amount of deformation and deformation temperature. Both cold and hot deformed samples were annealed at the normal solution treatment temperature of 535 °C. It was shown that large recrystallized grain diameters, relative to the interparticle spacing, could be produced in a narrow range of deformation for samples cold-worked and those hot-worked below 450 °C. For cold-worked samples, between 4 to 6 pct deformation, the recrystallized grain diameters varied from 530 to 66 μm as the amount of deformation increased. Subsequent grain growth was not observed in these recrystallized materials and noncompact grain shapes were observed. For deformations greater than 15 pct, recrystallized grain diameters less than the interparticle spacing were observed and subsequent grain growth produced a pinned grain diameter of 27 μm. The pinned grain diameter agreed well with an empirical model based on three dimensional (3-D) Monte Carlo simulations of grain growth and particle pinning in a two-phase material. Tensile properties were determined as a function of grain size, and it was shown that grain size had a weak influence on yield strength. A maximum in the yield strength was observed at a grain size larger than the normal grain growth and particle-pinned diameter
    corecore