9 research outputs found
A second order minimality condition for the Mumford-Shah functional
A new necessary minimality condition for the Mumford-Shah functional is
derived by means of second order variations. It is expressed in terms of a sign
condition for a nonlocal quadratic form on , being a
submanifold of the regular part of the discontinuity set of the critical point.
Two equivalent formulations are provided: one in terms of the first eigenvalue
of a suitable compact operator, the other involving a sort of nonlocal capacity
of . A sufficient condition for minimality is also deduced. Finally, an
explicit example is discussed, where a complete characterization of the domains
where the second variation is nonnegative can be given.Comment: 30 page
Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains
We consider general second order uniformly elliptic operators subject to
homogeneous boundary conditions on open sets parametrized by
Lipschitz homeomorphisms defined on a fixed reference domain .
Given two open sets , we estimate the
variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm
for finite values of , under
natural summability conditions on eigenfunctions and their gradients. We prove
that such conditions are satisfied for a wide class of operators and open sets,
including open sets with Lipschitz continuous boundaries. We apply these
estimates to control the variation of the eigenvalues and eigenfunctions via
the measure of the symmetric difference of the open sets. We also discuss an
application to the stability of solutions to the Poisson problem.Comment: 34 pages. Minor changes in the introduction and the refercenes.
Published in: Around the research of Vladimir Maz'ya II, pp23--60, Int. Math.
Ser. (N.Y.), vol. 12, Springer, New York 201