9 research outputs found

    A second order minimality condition for the Mumford-Shah functional

    Full text link
    A new necessary minimality condition for the Mumford-Shah functional is derived by means of second order variations. It is expressed in terms of a sign condition for a nonlocal quadratic form on H01(Γ)H^1_0(\Gamma), Γ\Gamma being a submanifold of the regular part of the discontinuity set of the critical point. Two equivalent formulations are provided: one in terms of the first eigenvalue of a suitable compact operator, the other involving a sort of nonlocal capacity of Γ\Gamma. A sufficient condition for minimality is also deduced. Finally, an explicit example is discussed, where a complete characterization of the domains where the second variation is nonnegative can be given.Comment: 30 page

    Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains

    Full text link
    We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets ϕ(Ω)\phi (\Omega) parametrized by Lipschitz homeomorphisms ϕ\phi defined on a fixed reference domain Ω\Omega. Given two open sets ϕ(Ω)\phi (\Omega), ϕ~(Ω)\tilde \phi (\Omega) we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm ϕ~ϕW1,p(Ω)\|\tilde \phi -\phi \|_{W^{1,p}(\Omega)} for finite values of pp, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.Comment: 34 pages. Minor changes in the introduction and the refercenes. Published in: Around the research of Vladimir Maz'ya II, pp23--60, Int. Math. Ser. (N.Y.), vol. 12, Springer, New York 201
    corecore