22 research outputs found
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
BVR – Better Variability Results
We present BVR (Base Variability Resolution models), a language developed to fulfill the industrial needs in the safety domain for variability modeling. We show how the industrial needs are in fact quite general and that general mechanisms can be used to satisfy them. BVR is built on the OMG Revised Submission of CVL (Common Variability Language), but is simplified and enhanced relative to that language.acceptedVersio