3 research outputs found

    A model for DNA polymerase translocation: worm-like movement of DNA within the binding cleft

    Get PDF
    AbstractOn the basis of recent results, we propose a model for DNA polymerase translocation along DNA. Human immunodeficiency virus reverse transcriptase is taken as an example. According to the model, movement of the enzyme is the result of transition of the enzyme-bound DNA from the A- to B-form which is accompanied by lengthening of DNA within the binding channel. The driving force of this transition is the increase in water accessibility to the DNA-binding cleft after dNTP binding. dNTP hydrolysis proceeding during the following chemical step supplies the energy for the reverse B → A transition of DNA. Translocation is considered to be an integral part of the stage of conformational change preceding catalysis and can be described as a worm-like movement of DNA within the DNA-binding cleft

    Cytoplasmic male sterility and prospects for its utilization in potato breeding, genetic studies and hybrid seed production

    No full text
    corecore