96 research outputs found

    Palatini approach to 1/R gravity and its implications to the late Universe

    Full text link
    By applying the Palatini approach to the 1/R-gravity model it is possible to explain the present accelerated expansion of the Universe. Investigation of the late Universe limiting case shows that: (i) due to the curvature effects the energy-momentum tensor of the matter field is not covariantly conserved; (ii) however, it is possible to reinterpret the curvature corrections as sources of the gravitational field, by defining a modified energy-momentum tensor; (iii) with the adoption of this modified energy-momentum tensor the Einstein's field equations are recovered with two main modifications: the first one is the weakening of the gravitational effects of matter whereas the second is the emergence of an effective varying "cosmological constant"; (iv) there is a transition in the evolution of the cosmic scale factor from a power-law scaling at11/18a\propto t^{11/18} to an asymptotically exponential scaling aexp(t)a\propto \exp(t); (v) the energy density of the matter field scales as ρm(1/a)36/11\rho_m\propto (1/a)^{36/11}; (vi) the present age of the Universe and the decelerated-accelerated transition redshift are smaller than the corresponding ones in the Λ\LambdaCDM model.Comment: 5 pages and 2 figures. Accepted in PR

    Inflationary and dark energy regimes in 2+1 dimensions

    Full text link
    In this work we investigate the behavior of three-dimensional (3D) cosmological models. The simulation of inflationary and dark-energy-dominated eras are among the possible results in these 3D formulations; taking as starting point the results obtained by Cornish and Frankel. Motivated by those results, we investigate, first, the inflationary case where we consider a two-constituent cosmological fluid: the scalar field represents the hypothetical inflaton which is in gravitational interaction with a matter/radiation contribution. For the description of an old universe, it is possible to simulate its evolution starting with a matter dominated universe that faces a decelerated/accelerated transition due to the presence of the additional constituent (simulated by the scalar field or ruled by an exotic equation of state) that plays the role of dark energy. We obtain, through numerical analysis, the evolution in time of the scale factor, the acceleration, the energy densities, and the hydrostatic pressure of the constituents. The alternative scalar cosmology proposed by Cornish and Frankel is also under investigation in this work. In this case an inflationary model can be constructed when another non-polytropic equation of state (the van der Waals equation) is used to simulate the behavior of an early 3D universe.Comment: Latex file, plus 9 figures. To appear in General Relativity and Gravitatio

    Irreversible Processes in Inflationary Cosmological Models

    Get PDF
    By using the thermodynamic theory of irreversible processes and Einstein general relativity, a cosmological model is proposed where the early universe is considered as a mixture of a scalar field with a matter field. The scalar field refers to the inflaton while the matter field to the classical particles. The irreversibility is related to a particle production process at the expense of the gravitational energy and of the inflaton energy. The particle production process is represented by a non-equilibrium pressure in the energy-momentum tensor. The non-equilibrium pressure is proportional to the Hubble parameter and its proportionality factor is identified with the coefficient of bulk viscosity. The dynamic equations of the inflaton and the Einstein field equations determine the time evolution of the cosmic scale factor, the Hubble parameter, the acceleration and of the energy densities of the inflaton and matter. Among other results it is shown that in some regimes the acceleration is positive which simulates an inflation. Moreover, the acceleration decreases and tends to zero in the instant of time where the energy density of matter attains its maximum value.Comment: 13 pages, 2 figures, to appear in PR

    A Note on Energy-Momentum Conservation in Palatini Formulation of L(R) Gravity

    Full text link
    By establishing that Palatini formulation of L(R)L(R) gravity is equivalent to ω=3/2\omega=-3/2 Brans-Dicke theory, we show that energy-momentum tensor is covariantly conserved in this type of modified gravity theory.Comment: 7 page

    Tachyonization of the \LaCDM cosmological model

    Full text link
    In this work a tachyonization of the Λ\LambdaCDM model for a spatially flat Friedmann-Robertson-Walker space-time is proposed. A tachyon field and a cosmological constant are considered as the sources of the gravitational field. Starting from a stability analysis and from the exact solutions for a standard tachyon field driven by a given potential, the search for a large set of cosmological models which contain the Λ\LambdaCDM model is investigated. By the use of internal transformations two new kinds of tachyon fields are derived from the standard tachyon field, namely, a complementary and a phantom tachyon fields. Numerical solutions for the three kinds of tachyon fields are determined and it is shown that the standard and complementary tachyon fields reproduces the Λ\LambdaCDM model as a limiting case. The standard tachyon field can also describe a transition from an accelerated to a decelerated regime, behaving as an inflaton field at early times and as a matter field at late times. The complementary tachyon field always behaves as a matter field. The phantom tachyon field is characterized by a rapid expansion where its energy density increases with time.Comment: Version accepted for publication in GR

    Dieterici gas as a Unified Model for Dark Matter and Dark Energy

    Full text link
    The dominance of dark energy in the universe has necessitated the introduction of a repulsive gravity source to make q0 negative. The models for dark energy range from a simple lambda-term to quintessence, Chaplygin gas, etc. We look at the possibility of how change of behaviour of missing energy density, from DM to DE, may be determined by the change in the equation of state of a background fluid instead of a form of potential. The question of cosmic acceleration can be discussed within the framework of theories which do not necessarily include scalar fields.Comment: 9 pages, 38 equation

    Cosmological model with interactions in the dark sector

    Full text link
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure

    Le Chatelier-Braun principle in cosmological physics

    Full text link
    Assuming that dark energy may be treated as a fluid with a well defined temperature, close to equilibrium, we argue that if nowadays there is a transfer of energy between dark energy and dark matter, it must be such that the latter gains energy from the former and not the other way around.Comment: 6 pages, revtex file, no figures; version accepted for publication in General Relativity and Gravitatio

    Gravitational Lensing and f(R) theories in the Palatini approach

    Full text link
    We investigate gravitational lensing in the Palatini approach to the f(R) extended theories of gravity. Starting from an exact solution of the f(R) field equations, which corresponds to the Schwarzschild-de Sitter metric and, on the basis of recent studies on this metric, we focus on some lensing observables, in order to evaluate the effects of the non linearity of the gravity Lagrangian. We give estimates for some astrophysical events, and show that these effects are tiny for galactic lenses, but become interesting for extragalactic ones.Comment: 7 Pages, RevTex, 1 eps figure; references added; revised to match the version accepted for publication in General Relativity and Gravitatio

    Self-avoiding walks and connective constants in small-world networks

    Full text link
    Long-distance characteristics of small-world networks have been studied by means of self-avoiding walks (SAW's). We consider networks generated by rewiring links in one- and two-dimensional regular lattices. The number of SAW's unu_n was obtained from numerical simulations as a function of the number of steps nn on the considered networks. The so-called connective constant, μ=limnun/un1\mu = \lim_{n \to \infty} u_n/u_{n-1}, which characterizes the long-distance behavior of the walks, increases continuously with disorder strength (or rewiring probability, pp). For small pp, one has a linear relation μ=μ0+ap\mu = \mu_0 + a p, μ0\mu_0 and aa being constants dependent on the underlying lattice. Close to p=1p = 1 one finds the behavior expected for random graphs. An analytical approach is given to account for the results derived from numerical simulations. Both methods yield results agreeing with each other for small pp, and differ for pp close to 1, because of the different connectivity distributions resulting in both cases.Comment: 7 pages, 5 figure
    corecore