7 research outputs found

    The resistance of macrophage-like tumour cell lines to growth inhibition by lipopolysaccharide and pertussis toxin

    No full text
    The process of tumorigenesis is frequently associated with resistance to growth inhibition by physiological regulators of normal cells. Murine macrophage-like cell lines BAC1.2F5, RAW264, J774.1A and PU5/1.8 were resistant to growth inhibition by bacterial lipopolysaccharide (LPS) and pertussis toxin, agents that blocked growth of primary bone marrow-derived macrophages (BMDM) in the presence of macrophage colony-stimulating factor (CSF-1). The resistance of the CSF-1-dependent cell line BAC1.2F5 to growth inhibition by pertussis toxin argues against the possibility that pertussis toxin-sensitive G proteins are essential for the pathway of growth stimulation by CSF-1. Conversely, these data add further weight to the argument that LPS mediates some of its biological activities by mimicking the action of pertussis toxin and inhibiting G protein function. The resistance of cell lines to LPS and pertussis toxin was not correlated with any alteration in the expression of mRNA encoding any of three pertussis-toxin sensitive G protein alpha subunits. The pattern of G protein expression was consistent between primary cells and tumour cells, suggesting that this is a differentiation marker. In particular, Gi alpha 2 mRNA was expressed at remarkably high levels in all of the cells. The specificity of LPS resistance was investigated by studying down-regulation of CSF-1 binding and induction of protooncogene c-fos and tumour necrosis factor (TNF) mRNA. BAC1.2F5 cells were LPS-resistant in each of these assays. In CSF-1 binding, RAW264 and J774.1A responded in the same way as bone marrow-derived macrophages but required higher doses of LPS, whereas c-fos and TNF mRNA were induced in these cells at concentrations that did not inhibit growth. In PU5/1.8 cells, CSF-1 binding was already very low and was not further down-regulated, but c-fos and TNF mRNA was inducible by LPS. By contrast to primary macrophages, the cell lines did not respond to LPS with down-regulation of c-fms mRNA, which encodes the CSF-1 receptor. Hence, the resistance of macrophage-like tumour cells to LPS and pertussis toxin was specific to the pathways controlling growth, and was correlated with altered regulation of the CSF-1 receptor

    Cytokines and Tumor Angiogenesis

    No full text

    The Reward Deficiency Syndrome: A Biogenetic Model for the Diagnosis and Treatment of Impulsive, Addictive and Compulsive Behaviors

    No full text
    corecore