17 research outputs found

    Novel Synthesis and High Pressure Behavior of Na0.3CoO2 x 1.3 H2O and Related Phases

    Full text link
    We have prepared powder samples of NaxCoO2 x yH2O using a new synthesis route. Superconductivity was observed in Na0.3CoO2 x 1.3H2O between 4 and 5K as indicated by the magnetic susceptibility. The bulk compressibilities of Na0.3CoO2 x 1.3H2O, Na0.3CoO2 x 0.6H2O and Na0.3CoO2 were determined using a diamond anvil cell and synchrotron powder diffraction. Chemical changes occurring under pressure when using different pressure transmitting media are discussed and further transport measurements are advocated.Comment: 7 pages, 4 figures, PRrapid submitte

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    Calibration of the Raman effect in α–Al 2

    No full text
    corecore