2 research outputs found
Computationally Efficient Data and Application Driven Color Transforms for the Compression and Enhancement of Images and Video
An important step in color image or video coding and enhancement is the linear transformation of input (typically red-green-blue (RGB)) data into a color space more suitable for compression, subsequent analysis, or visualization. The choice of this transform becomes even more critical when operating in distributed and low-computational power environments, such as visual sensor networks or remote sensing. Data-driven transforms are rarely used due to increased complexity. Most schemes adopt fixed transforms to decorrelate the color channels which are then processed independently. Here we propose two frameworks to find appropriate data-driven transforms in different settings. The first, named approximate KarhunenâLoève Transform (aKLT), performs comparable to the KLT at a fraction of the computational complexity, thus favoring adoption on sensors and resource-constrained devices. Furthermore, we consider an application-aware setting in which an expert system (e.g., a classifier) analyzes imaging data at the receiverâs end. In a compression context, distortion may jeopardize the accuracy of the analysis. Since the KLT is not optimal in this setting, we investigate formulations that maximize post-compression expert system performance. Relaxing decorrelation and energy compactness constraints, a second transform can be obtained offline with supervised learning methods. Finally, we propose transforms that accommodate both constraints, and are found using regularized optimization
International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module
â˘We report INICC device-associated module data of 50 countries from 2010-2015.â˘We collected prospective data from 861,284 patients in 703 ICUs for 3,506,562 days.â˘DA-HAI rates and bacterial resistance were higher in the INICC ICUs than in CDC-NHSN's.â˘Device utilization ratio in the INICC ICUs was similar to CDC-NHSN's.
Background: We report the results of International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2010-December 2015 in 703 intensive care units (ICUs) in Latin America, Europe, Eastern Mediterranean, Southeast Asia, and Western Pacific.
Methods: During the 6-year study period, using Centers for Disease Control and Prevention National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 861,284 patients hospitalized in INICC hospital ICUs for an aggregate of 3,506,562 days.
Results: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the INICC medical-surgical ICUs, the pooled rate of central line-associated bloodstream infection, 4.1 per 1,000 central line-days, was nearly 5-fold higher than the 0.8 per 1,000 central line-days reported from comparable US ICUs, the overall rate of ventilator-associated pneumonia was also higher, 13.1 versus 0.9 per 1,000 ventilator-days, as was the rate of catheter-associated urinary tract infection, 5.07 versus 1.7 per 1,000 catheter-days. From blood cultures samples, frequencies of resistance of Pseudomonas isolates to amikacin (29.87% vs 10%) and to imipenem (44.3% vs 26.1%), and of Klebsiella pneumoniae isolates to ceftazidime (73.2% vs 28.8%) and to imipenem (43.27% vs 12.8%) were also higher in the INICC ICUs compared with CDC-NHSN ICUs.
Conclusions: Although DA-HAIs in INICC ICU patients continue to be higher than the rates reported in CDC-NSHN ICUs representing the developed world, we have observed a significant trend toward the reduction of DA-HAI rates in INICC ICUs as shown in each international report. It is INICC's main goal to continue facilitating education, training, and basic and cost-effective tools and resources, such as standardized forms and an online platform, to tackle this problem effectively and systematically