119 research outputs found

    On the theory of the ceramic densification process an of recrystallization in colloidal solutions

    Get PDF
    In a short survey the analogy between the theories on diffusion in solids and in solutions is shown. As a result, analogous theories are developed for the ceramic sintering process and the recrystallization in colloidal solutions. By a thermodynamic method a description is given of the available free energy, the diffusion flux and the driving force

    The influence of foreign ions on the crystal lattice of barium titanate

    Get PDF
    From investigations of phase diagrams of ternary oxides the lattice sites of foreign ions and compensating vacancies are established. Large trivalent ions occupy barium sites and are completely compensated by titanium vacancies. Small pentavalent ions occupy titanium sites and are mainly compensated by titanium vacancies. During these investigations a new compound was found, Ba La4 Ti4 O15 isomorphous with Ba5 Nb4 O15

    Phase diagrams of La1−xCaxMnO3\rm La_{1-x}Ca_xMnO_3 in Double Exchange Model with added antiferromagnetic and Jahn-Teller interaction

    Full text link
    The phase diagram of the multivalent manganites La1−xCaxMnO3\rm La_{1-x}Ca_xMnO_3, in space of temperature and doping xx, is a challenge for the theoretical physics. It is an important test for the model used to study these compounds and the method of calculation. To obtain theoretically this diagram for x<0.5x<0.5, we consider the two-band Double Exchange Model for manganites with added Jahn-Teller coupling and antiferromagnetic Heisenberg term. In order to calculate Curie and N\'{e}el temperatures we derive an effective Heisenberg model for a vector which describes the local orientation of the total magnetization of the system. The exchange constants of this model are different for different space directions and depend on the density of ege_g electrons, antiferromagnetic constants and the Jahn-Teller energy. To reproduce the well known phase transitions from A-type antiferromagnetism to ferromagnetism at low xx and C-type antiferromagnetism to G-type antiferromagnetism at large xx, we argue that the antiferromagnetic exchange constants should depend on the lattice direction. We show that ferromagnetic to A-type antiferromagnetic transition results from the Jahn-Teller distortion. Accounting adequately for the magnon-magnon interaction, Curie and N\'{e}el temperatures are calculated. The results are in very good agreement with the experiment and provide values for the model parameters, which best describe the behavior of the critical temperature for x<0.5x<0.5.Comment: 13 pages, 5 figure

    Colossal magnetooptical conductivity in doped manganites

    Get PDF
    We show that the current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change of the optical conductivity in an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magnetoresistance (CMR) itself, the corresponding magnetooptical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.Comment: 4 pages, REVTeX 3.0, two eps-figures included in the tex

    Evidence for a Low-Spin to Intermediate-Spin State Transition in LaCoO3

    Full text link
    We present measurements of the magnetic susceptibility and of the thermal expansion of a LaCoO3_3 single crystal. Both quantities show a strongly anomalous temperature dependence. Our data are consistently described in terms of a spin-state transition of the Co3+^{3+} ions with increasing temperature from a low-spin ground state to an intermediate-spin state without (100K - 500K) and with (>500K) orbital degeneracy. We attribute the lack of orbital degeneracy up to 500K to (probably local) Jahn-Teller distortions of the CoO6_6 octahedra. A strong reduction or disappearance of the Jahn-Teller distortions seems to arise from the insulator-to-metal transition around 500 K.Comment: an error in the scaling factor of Eq.(4) and consequently 2 values of table I have been corrected. The conclusions of the paper remain unchanged. See also: C. Zobel et al. Phys. Rev. B 71, 019902 (2005) and J. Baier et al. Phys. Rev. B 71, 014443 (2005

    Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO3

    Full text link
    We report on structural, magnetic and Electron Spin Resonance (ESR) investigations in the manganite system LaMn_{1-x}Cr_{x}O_{3} (x<=0.5). Upon Cr-doping we observe a reduction of the Jahn-Teller distortion yielding less distorted orthorhombic structures. A transition from the Jahn-Teller distorted O' to the pseudocubic O phase occurs between 0.3<x<0.4. A clear connection between this transition and the doping dependence of the magnetic and ESR properties has been observed. The effective moments determined by ESR seem reduced with respect to the spin-only value of both Mn^{3+} and Cr^{3+} ions

    Ultrasonic evidence of an uncorrelated cluster formation temperature in manganites with first-order magnetic transition at T_C

    Full text link
    Ultrasonic attenuation and phase velocity measurements have been carried out in the ferromagnetic perovskites La_{2/3}Ca_{1/3}MnO_3 and La_{2/3}Sr_{1/3}MnO_3. Data show that the transition at the Curie temperature, T_C, changes from first- to second-order as Sr replaces Ca in the perovskite. The compound with first-order transition shows also another transition at a temperature T* > T_C. We interpret the temperature window T_C < T < T* as a region of coexistence of a phase separated regime of metallic and insulating regions, in the line of recent theoretical proposals.Comment: 4 pages, 2 figure

    Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides

    Full text link
    Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller coupling is derived under full polarization of spins with two-dimensional anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital degrees of freedom are investigated by using the quantum Monte Carlo method. In undoped states, it is crucial to consider both the Coulomb interaction and the Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales among charge, orbital-lattice and spin degrees of freedom in experiments. Our numerical results quantitatively reproduce the charge gap amplitude as well as the stabilization energy and the amplitude of the cooperative Jahn-Teller distortion in undoped compounds. Upon doping of carriers, in the absence of the Jahn-Teller distortion, critical enhancement of both charge compressibility and orbital correlation length is found with decreasing doping concentration. These are discussed as origins of strong incoherence in charge dynamics. With the Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller distortion and instability to phase separation are obtained and favorably compared with experiments. These provide a possible way to understand the complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B, replaced version; two figures are replaced by Fig.17 with minor changes in the tex
    • 

    corecore