893 research outputs found
An Interactive Computer Model for Land Allocation in Regional Planning. Part II: System Design and User Manual
Since 1979, the Regional Development Task at IIASA is engaged in a case study of economic and demographic development, land-use and related problems in the region of southwestern Skane in Sweden. The case study is the third in a series of attempts made by the Regional Development Task to apply systems analytic methods to regional planning problems in regions with different economic structures, resource endowments and organizational settings.
The research in the Swedish case study is done in collaboration with the Southwest Skane Municipal Board, as a part of their ongoing work in physical and public transport planning for the metropolitan region of Malmo, and its neighboring municipalities. The research is partly sponsored by the Swedish Council for Building Research.
In the case study an integrated systems analytic package of models is used which has been developed within the Regional Development Task in cooperation with a group of Swedish researchers and planners. In that package, separate models have been developed for interregional economic and demographic problems, and for intraregional land-use problems.
The current paper deals with an interactive computer model developed by Geoffrey G. Roy, University of Western Australia, and Folke Snickars, Regional Development Task, IIASA. The theoretical foundation and specification of that model is found in the first of a series of three papers. The current, second paper describes the design of the computer system and also provides a user manual. A third paper will describe the use of the model in the Skane case study.
The interactive computer model described here has been implemented in the planning environment in southwestern Skane. It should also prove useful in other planning contexts
Restoring the sting to metric preheating
The relative growth of field and metric perturbations during preheating is
sensitive to initial conditions set in the preceding inflationary phase. Recent
work suggests this may protect super-Hubble metric perturbations from resonant
amplification during preheating. We show that this possibility is fragile and
sensitive to the specific form of the interactions between the inflaton and
other fields. The suppression is naturally absent in two classes of preheating
in which either (1) the vacua of the non-inflaton fields during inflation are
deformed away from the origin, or (2) the effective masses of non-inflaton
fields during inflation are small but during preheating are large. Unlike the
simple toy model of a coupling, most realistic particle
physics models contain these other features. Moreover, they generically lead to
both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble
scales. Large-scale coherent magnetic fields may also appear naturally.Comment: 6 pages, 3 ps figures, RevTex, revised discussion of backreaction and
new figure. To appear Phys. Rev. D (Rapid Communication
Fourier Acceleration of Langevin Molecular Dynamics
Fourier acceleration has been successfully applied to the simulation of
lattice field theories for more than a decade. In this paper, we extend the
method to the dynamics of discrete particles moving in continuum. Although our
method is based on a mapping of the particles' dynamics to a regular grid so
that discrete Fourier transforms may be taken, it should be emphasized that the
introduction of the grid is a purely algorithmic device and that no smoothing,
coarse-graining or mean-field approximations are made. The method thus can be
applied to the equations of motion of molecular dynamics (MD), or its Langevin
or Brownian variants. For example, in Langevin MD simulations our acceleration
technique permits a straightforward spectral decomposition of forces so that
the long-wavelength modes are integrated with a longer time step, thereby
reducing the time required to reach equilibrium or to decorrelate the system in
equilibrium. Speedup factors of up to 30 are observed relative to pure
(unaccelerated) Langevin MD. As with acceleration of critical lattice models,
even further gains relative to the unaccelerated method are expected for larger
systems. Preliminary results for Fourier-accelerated molecular dynamics are
presented in order to illustrate the basic concepts. Possible extensions of the
method and further lines of research are discussed.Comment: 11 pages, two illustrations included using graphic
Like Sign Dilepton Signature for R-Parity Violating SUSY Search at the Tevatron Collider
The like sign dileptons provide the most promising signature for
superparticle search in a large category of -parity violating SUSY models.
We estimate the like sign dilepton signals at the Tevatron collider, predicted
by these models, over a wide region of the MSSM parameter space. One expects an
unambiguous signal upto a gluino mass of GeV ( GeV) with
the present (proposed) accumulated luminosity of .Comment: 12 page LaTeX file; 5 figures available upon request from the autho
WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis
Neutrino properties and the decay of the lightest supersymmetric particle
Supersymmetry with broken R-parity can explain the neutrino mass squared
differences and mixing angles observed in neutrino oscillation experiments. In
the minimal model, where R-parity is broken only by bilinear terms, certain
decay properties of the lightest supersymmetric particle (LSP) are correlated
with neutrino mixing angles. Here we consider charginos, squarks, gluinos and
sneutrinos being the LSP and calculate their decay properties in bilinear
R-parity breaking supersymmetry. Together with the decays of charged scalars
and neutralinos calculated previously this completes the proof that bilinear
R-parity breaking as the source of neutrino masses will be testable at future
colliders. Moreover, we argue that in case of GMSB, the decays of the NLSP can
be used to test the model.Comment: 15 pages, 8 figure
Implications of the HERA Events for the R-Parity Breaking SUSY Signals at Tevatron
The favoured R-parity violating SUSY scenarios for the anomalous HERA events
correspond to top and charm squark production via the and
couplings. In both cases the corresponding electronic
branching fractions of the squarks are expected to be . Consequently the
canonical leptoquark signature is incapable of probing these scenarios at the
Tevatron collider over most of the MSSM parameter space. We suggest alternative
signatures for probing them at Tevatron, which seem to be viable over the
entire range of MSSM parameters.Comment: 20 pages Latex file with 4 ps files containing 4 figure
Neutrino Masses, Mixing and New Physics Effects
We introduce a parametrization of the effects of radiative corrections from
new physics on the charged lepton and neutrino mass matrices, studying how
several relevant quantities describing the pattern of neutrino masses and
mixing are affected by these corrections. We find that the ratio omega = sin
theta / tan theta_atm is remarkably stable, even when relatively large
corrections are added to the original mass matrices. It is also found that if
the lightest neutrino has a mass around 0.3 eV, the pattern of masses and
mixings is considerably more stable under perturbations than for a lighter or
heavier spectrum. We explore the consequences of perturbations on some flavor
relations given in the literature. In addition, for a quasi-degenerate neutrino
spectrum it is shown that: (i) starting from a bi-maximal mixing scenario, the
corrections to the mass matrices keep tan theta_atm very close to unity while
they can lower tan theta_sol to its measured value; (ii) beginning from a
scenario with a vanishing Dirac phase, corrections can induce a Dirac phase
large enough to yield CP violation observable in neutrino oscillations.Comment: 14 pages, 21 figures. Uses RevTeX4. Added several comments and
references. Final version to appear in PR
- …