3 research outputs found

    Four-point Functions of Lowest Weight CPOs in N=4 SYM_4 in Supergravity Approximation

    Get PDF
    We show that the recently found quartic action for the scalars from the massless graviton multiplet of type IIB supergravity compactified on AdS_5\times S^5 background coincides with the relevant part of the action of the gauged N=8 5d supergravity on AdS_5. We then use this action to compute the 4-point function of the lowest weight chiral primary operators \tr(\phi^{(i}\phi^{j)}) in N=4 SYM_4 at large NN and at strong `t Hooft coupling.Comment: Latex, 21p, misprints are correcte

    Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops

    Full text link
    We discuss how to extract renormalized from bare Polyakov loops in SU(N) lattice gauge theories at nonzero temperature in four spacetime dimensions. Single loops in an irreducible representation are multiplicatively renormalized without mixing, through a renormalization constant which depends upon both representation and temperature. The values of renormalized loops in the four lowest representations of SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the sextet and octet loops are approximately the square of the triplet loop. This agrees with a large NN expansion, where factorization implies that the expectation values of loops in adjoint and higher representations are just powers of fundamental and anti-fundamental loops. For three colors, numerically the corrections to the large NN relations are greatest for the sextet loop, ≀25\leq 25%; these represent corrections of ∌1/N\sim 1/N for N=3. The values of the renormalized triplet loop can be described by an SU(3) matrix model, with an effective action dominated by the triplet loop. In several ways, the deconfining phase transition for N=3 appears to be like that in the N=∞N=\infty matrix model of Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion for clarity, results unchange
    corecore