2 research outputs found

    Dislocation-Mediated Melting: The One-Component Plasma Limit

    Full text link
    The melting parameter Γm\Gamma_m of a classical one-component plasma is estimated using a relation between melting temperature, density, shear modulus, and crystal coordination number that follows from our model of dislocation-mediated melting. We obtain Γm=172±35,\Gamma_m=172\pm 35, in good agreement with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe

    Melting as a String-Mediated Phase Transition

    Full text link
    We present a theory of the melting of elemental solids as a dislocation-mediated phase transition. We model dislocations near melt as non-interacting closed strings on a lattice. In this framework we derive simple expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt. We use experimental data for more than half the elements in the Periodic Table to determine the dislocation density from both relations. Melting temperatures yield a dislocation density of (0.61\pm 0.20) b^{-2}, in good agreement with the density obtained from latent heats, (0.66\pm 0.11) b^{-2}, where b is the length of the smallest perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.
    corecore