1,338 research outputs found

    Clipping weeds above crop canopy reduces subsequent seedling recruitment

    Get PDF
    Non-Peer ReviewedWeed control is a challenge for organic growers. Organic producers rely on crop rotation, cultural practices, and mechanical weed control to control weeds. Some organic producers have experimented with clipping weeds above the canopy of short stature crops such as lentil or flax. A project was initiated in 1999 to develop or modify equipment for weed clipping and to evaluate whether the practice improved crop yield and/or reduced weed seedling recruitment the following growing season. At Scott, a field experiment was conducted over two years where clipping at various stages of weed development was evaluated. The clipping was done above a lentil crop canopy with a gas-powered hedge trimmer. The Prairie Agriculture Machinery Institute at Humboldt modified the cutting component of a self-propelled swather and carried out field trials on four farmer’s fields

    Engaging students with profound and multiple disabilities using humanoid robots

    Get PDF
    Engagement is the single best predictor of successful learning for children with intellectual disabilities yet achieving engagement with pupils who have profound or multiple disabilities (PMD) presents a challenge to educators. Robots have been used to engage children with autism but are they effective with pupils whose disabilities limit their ability to control other technology? Learning objectives were identified for eleven pupils with PMD and a humanoid robot was programmed to enable teachers to use it to help pupils achieve these objectives. These changes were evaluated with a series of eleven case studies where teacher-pupil dyads were observed during four planned video recorded sessions. Engagement was rated in a classroom setting and during the last session with the robot. Video recordings were analysed for duration of engagement and teacher assistance and number of goals achieved. Rated engagement was significantly higher with the robot than in the classroom. Observations of engagement, assistance and goal achievement remained at the same level throughout the sessions suggesting no reduction in the novelty factor

    Single-molecule study of redox control involved in establishing the spinach plastocyanin-cytochrome b6f electron transfer complex

    Get PDF
    Small diffusible redox proteins play a ubiquitous role in bioenergetic systems, facilitating electron transfer (ET) between membrane bound complexes. Sustaining high ET turnover rates requires that the association between extrinsic and membrane-bound partners is highly specific, yet also sufficiently weak to promote rapid post-ET separation. In oxygenic photosynthesis the small soluble electron carrier protein plastocyanin (Pc) shuttles electrons between the membrane integral cytochrome b6f (cytb6f) and photosystem I (PSI) complexes. Here we use peak-force quantitative nanomechanical mapping (PF-QNM) atomic force microscopy (AFM) to quantify the dynamic forces involved in transient interactions between cognate ET partners. An AFM probe functionalised with Pc molecules is brought into contact with cytb6f complexes, immobilised on a planar silicon surface. PF-QNM interrogates the unbinding force of the cytb6f-Pc interactions at the single molecule level with picoNewton force resolution and on a time scale comparable to the ET time in vivo (ca. 120â€ŻÎŒs). Using this approach, we show that although the unbinding force remains unchanged the interaction frequency increases over five-fold when Pc and cytb6f are in opposite redox states, so complementary charges on the cytb6f and Pc cofactors likely contribute to the electrostatic forces that initiate formation of the ET complex. These results suggest that formation of the docking interface is under redox state control, which lowers the probability of unproductive encounters between Pc and cytb6f molecules in the same redox state, ensuring the efficiency and directionality of this central reaction in the ‘Z-scheme’ of photosynthetic ET

    Roentgen cephalometric analysis of ridge resorption and changes in jaw and occlusal relationships in immediate complete denture wearers

    Full text link
    In eighteen subjects assigned for immediate complete upper and lower dentures, roentgen cephalometric recordings were made before extraction of the residual anterior dentition and 3 weeks, 3 months, 6 months and 1 year after denture insertion. The cephalometric analysis was based on electronic measurements of linear and angular morphological variables and computer head plots generated from 177 reference points (Walker, 1967), derived for each subject for each of the five observation stages. The reduction of the alveolar ridges was most rapid during the first 3 months of denture wear and particularly during the post-extraction period of 3 weeks. The reduction in anterior height of the lower ridge was on average twice as great as that of the upper ridge. The ridge resorption and the accompanying settling of the dentures on the basal seats, measured from lead shots inserted in the dentures, brought about an upward rotation of the mandible with a resulting decrease in occlusal vertical dimension and reduction in overjet of the dentures. In accordance with the amount of ridge reduction, these changes showed great individual variation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73577/1/j.1365-2842.1980.tb01466.x.pd

    Mg and K effects on cation uptake and dry matter accumulation in tall fescue (Festuca arundinacea)

    Get PDF
    HiMag tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire = Festuca arundinacea Schreb) was selected for high Mg concentration in the herbage to reduce grass tetany risk to ruminants; however, the mechanism of increased Mg uptake into shoots is unknown. The objective was to determine cation concentrations of roots, crowns, and leaves in plants of cv. HiMag and its parents, cv. Kentucky 31 and cv. Missouri 96, grown in nutrient solution for 42 days, and determine if cation ratios in roots, crowns, and leaves are different, indicating a difference due to translocation. Treatments were “basal” (1.5 mM K and 0.5 mM Mg), “K” (3.2 mM K), “Mg” (1 mM Mg), and “K?+?Mg” (3.2 mM K and 1 mM Mg). For HiMag, Mg was lower in roots (Trial 2 only), not different in crowns, and greater in leaves than Kentucky 31 and Missouri 96. Doubling the K and Mg of the nutrient solution from basal levels resulted in a 44% reduction of root Mg in Kentucky 31 and Missouri 96, compared to a 17% reduction in root Mg for HiMag. The K inflow rate in HiMag for the basal treatment was lower than that in Kentucky 31 and Missouri 96. These results provide evidence for a process that limits K uptake and an active Mg translocation mechanism in tall fescue. HiMag was apparently selected for traits that promote translocation of Mg from roots to shoots

    Mesh update techniques for free-surface flow solvers using spectral element method

    Get PDF
    This paper presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral element method and relying on the arbitrary Lagrangian--Eulerian kinematic description for moving the grid. Selected results showing compatibility of this mesh-update technique with spectral element method are given

    Optimizing the fast Rydberg quantum gate

    Get PDF
    The fast phase gate scheme, in which the qubits are atoms confined in sites of an optical lattice, and gate operations are mediated by excitation of Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000). A potential source of decoherence in this system derives from motional heating, which occurs if the ground and Rydberg states of the atom move in different optical lattice potentials. We propose to minimize this effect by choosing the lattice photon frequency \omega so that the ground and Rydberg states have the same frequency-dependent polarizability \alpha(omega). The results are presented for the case of Rb.Comment: 5 pages, submitted to PR

    Nonequilibrium steady state thermodynamics and fluctuations for stochastic systems

    Full text link
    We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on a generalized Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.Comment: 39 pages, 3 figur

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave K−K^- condensate state may occur at densities ρc∌3Ă·5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl

    Tests of the random phase approximation for transition strengths

    Get PDF
    We investigate the reliability of transition strengths computed in the random-phase approximation (RPA), comparing with exact results from diagonalization in full 0ℏω0\hbar\omega shell-model spaces. The RPA and shell-model results are in reasonable agreement for most transitions; however some very low-lying collective transitions, such as isoscalar quadrupole, are in serious disagreement. We suggest the failure lies with incomplete restoration of broken symmetries in the RPA. Furthermore we prove, analytically and numerically, that standard statements regarding the energy-weighted sum rule in the RPA do not hold if an exact symmetry is broken.Comment: 11 pages, 7 figures; Appendix added with new proof regarding violation of energy-weighted sum rul
    • 

    corecore