4 research outputs found

    Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model

    Full text link
    We have studied electron correlations in the doped two-dimensional (2D) Hubbard model by using the coupled-cluster method (CCM) to investigate whether or not the method can be applied to correct the independent particle approximations actually used in ab-initio band calculations. The double excitation version of the CCM, implemented using the approximate coupled pair (ACP) method, account for most of the correlation energies of the 2D Hubbard model in the weak (U/t≃1U/t \simeq 1) and the intermediate U/tU/t regions (U/t≃4U/t \simeq 4). The error is always less than 1% there. The ACP approximation gets less accurate for large U/tU/t (U/t≃8U/t \simeq 8) and/or near half-filling. Further incorporation of electron correlation effects is necessary in this region. The accuracy does not depend on the system size and the gap between the lowest unoccupied level and the highest occupied level due to the finite size effect. Hence, the CCM may be favorably applied to ab-initio band calculations on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure

    Accurate Nonlinear Optical Properties for Small Molecules

    No full text

    Time-dependent multiconfiguration methods for the numerical simulation of photoionization processes of many-electron atoms

    No full text
    corecore