245 research outputs found
The Higgs as a Portal to Plasmon-like Unparticle Excitations
A renormalizable coupling between the Higgs and a scalar unparticle operator
O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry
breaking, an infrared divergent vacuum expectation value for O_U. Such IR
divergence should be tamed before any phenomenological implications of the
Higgs-unparticle interplay can be drawn. In this paper we present a novel
mechanism to cure that IR divergence through (scale-invariant) unparticle
self-interactions, which has properties qualitatively different from the
mechanism considered previously. Besides finding a mass gap in the unparticle
continuum we also find an unparticle pole reminiscent of a plasmon resonance.
Such unparticle features could be explored experimentally through their mixing
with the Higgs boson.Comment: 12 LaTeX pages, 2 figure
Donor-photoluminescence Line Shapes From Gaas-(ga,al)as Quantum Wells
The D°-h impurity-related photoluminescence spectra of confined donors in GaAs-(Ga,Al)As quantum wells is theoretically investigated within the effective-mass approximation. The impurity wave functions and binding energies are evaluated via a variational procedure. Calculations are performed for different well widths, temperatures, and impurity doping profiles. Typical D-h theoretical photoluminescence line shapes show peaked structures corresponding to on-center and on-edge donors in good agreement with experimental results. © 1993 The American Physical Society.4742406240
Momentum conservation and local field corrections for the response of interacting Fermi gases
We reanalyze the recently derived response function for interacting systems
in relaxation time approximation respecting density, momentum and energy
conservation. We find that momentum conservation leads exactly to the local
field corrections for both cases respecting only density conservation and
respecting density and energy conservation. This rewriting simplifies the
former formulae dramatically. We discuss the small wave vector expansion and
find that the response function shows a high frequency dependence of
which allows to fulfill higher order sum rules. The momentum
conservation also resolves a puzzle about the conductivity which should only be
finite in multicomponent systems
Resonant thermal transport in semiconductor barrier structures
I report that thermal single-barrier (TSB) and thermal double-barrier (TDB)
structures (formed, for example, by inserting one or two regions of a few Ge
monolayers in Si) provide both a suppression of the phonon transport as well as
a resonant-thermal-transport effect. I show that high-frequency phonons can
experience a traditional double-barrier resonant tunneling in the TDB
structures while the formation of Fabry-Perot resonances (at lower frequencies)
causes quantum oscillations in the temperature variation of both the TSB and
TDB thermal conductances and .Comment: 4 pages. 4 figure.
Thermoelectrics Near the Mott Localization-Delocalization Transition
We give an overview on current status of the theoretical research on
Thermoelectricity for correlated materials. We derive the theoretical formulas
which become exact at low and high temperature and discuss the intermediate
temperature results. In particular, we show that within Dynamical Mean Field
Theory the low temperature sign of the thermopower is not necessary the same as
in LDA, and that significant non-universality is expected due to strong
correlations.Comment: appeared in "Properties and Applications of Thermoelectric
Materials", Edited by V. Zlatic and A.C. Hewson, Springe
Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4
Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4 has been studied through
charge transport measurements. The resistivity, the Seebeck coefficient, and
the Hall coefficient are consistently explained in terms of a simple one-band
picture, where a hole with a moderately enhanced mass is itinerant
three-dimensionally. Contrary to the theoretical prediction [Phys. Rev. B62,
13426 (2000)], CaPd_3O_4 is unlikely to be an excitonic insulator, and holds a
finite carrier concentration down to 4.2 K. Thus the metal-insulator transition
in this system is basically driven by localization effects.Comment: RevTeX4 format, 4 pages, 5 eps figure
Optimizing thermal transport in the Falicov-Kimball model: binary-alloy picture
We analyze the thermal transport properties of the Falicov-Kimball model
concentrating on locating regions of parameter space where the thermoelectric
figure-of-merit ZT is large. We focus on high temperature for power generation
applications and low temperature for cooling applications. We constrain the
static particles (ions) to have a fixed concentration, and vary the conduction
electron concentration as in the binary-alloy picture of the Falicov-Kimball
model. We find a large region of parameter space with ZT>1 at high temperature
and we find a small region of parameter space with ZT>1 at low temperature for
correlated systems, but we believe inclusion of the lattice thermal
conductivity will greatly reduce the low-temperature figure-of-merit.Comment: 13 pages, 14 figures, typeset with ReVTe
Heat transport of electron-doped Cobaltates
Within the t-J model, the heat transport of electron-doped cobaltates is
studied based on the fermion-spin theory. It is shown that the temperature
dependent thermal conductivity is characterized by the low temperature peak
located at a finite temperature. The thermal conductivity increases
monotonously with increasing temperature at low temperatures T 0.1, and
then decreases with increasing temperature for higher temperatures T
0.1, in qualitative agreement with experimental result observed from
NaCoO .Comment: 4 pages, 1 fig, corrected typos, accepted for publication in Commun.
Theor. Phy
Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation
We calculate the exponents of the threshold singularities in the
photoemission spectrum of a deep core hole and its X-ray absorption spectrum in
the framework of a systematic many-body theory of slave bosons and
pseudofermions (for the empty and occupied core level). In this representation,
photoemission and X-ray absorption can be understood on the same footing; no
distinction between orthogonality catastrophe and excitonic effects is
necessary. We apply the conserving slave particle T-matrix approximation
(CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior
systems with strong local correlations, to the X-ray problem as a test case.
The numerical results for both photoemission and X-ray absorption are found to
be in agreement with the exact infrared powerlaw behavior in the weak as well
as in the strong coupling regions. We point out a close relation of the CTMA
with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio
Coherent Control for a Two-level System Coupled to Phonons
The interband polarizations induced by two phase-locked pulses in a
semiconductor show strong interference effects depending on the time tau_1
separating the pulses. The four-wave mixing signal diffracted from a third
pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave
mixing response is evaluated exactly for a two-level system coupled to a single
LO phonon. In the weak coupling regime it shows oscillations with the phonon
frequency which turn into sharp peaks at multiples of the phonon period for a
larger coupling strength. Destructive interferences between the two
phase-locked pulses produce a splitting of the phonon peaks into a doublet. For
fixed tau but varying tau_1 the signal shows rapid oscillations at the
interband-transition frequency, whose amplitude exhibits bursts at multiples of
the phonon period.Comment: 4 pages, 4 figures, RevTex, content change
- …