28 research outputs found

    Diploid males and their triploid offspring in the paper wasp Polistes dominulus

    No full text
    Although the hymenopteran sex-determining mechanism generally results in haploid males and diploid females, diploid males can be produced via homozygosity at the sex-determining locus. Diploid males have low fitness because they are effectively sterile or produce presumably sterile triploid offspring. Previously, triploid females were observed in three species of North American Polistes paper wasps, and this was interpreted as indirect evidence of diploid males. Here we report what is, to our knowledge, the first direct evidence: four of five early male-producing Polistes dominulus nests from three populations contained diploid males. Because haploid males were also found, however, the adaptive value of early males cannot be ignored. Using genetic and morphological data from triploid females, we also present evidence that both diploid males and triploid females remain undetected throughout the colony cycle. Consequently, diploid male production may result in a delayed fitness cost for two generations. This phenomenon is particularly relevant for introduced populations with few alleles at the sex-determining locus, but cannot be ignored in native populations without supporting genetic data. Future research using paper wasp populations to test theories of social evolution should explicitly consider the potential impacts of diploid males

    A cladistic analysis of the nomadine bees (Hymenoptera: Apoidea)

    No full text
    This study compares the results of Rozen\u27s cladistic analysis of the larvae of fifteen genera of cleptoparasitic bees in the subfamily Nomadinae with an independent data set of adult characters for the same genera. Adult characters exhibited considerably higher levels of homoplasy and poorer resolution of cladistic relationships, with multiple equally parsimonious cladograms. However, comparison of a Nelson consensus tree based on adult characters with the cladogram based on larval characters reveals three components consistently supported in both analyses (the tribes Epeolini and Ammobatini, and Neopasites + Neolarra), one component supported only by adult characters (lsepeolus + Protepeolus), and one terminal component supported only by larval characters (Nomada + Ammobatini), as well as several more inclusive groupings based on larval characters that are difficult to compare with the adult consensus tree because it shows so much less resolution. When adult and larval characters are combined in a single data matrix, the resulting cladogram closely resembles the cladogram based on larval characters alone, although levels of homoplasy are considerably higher than in the larval analysis
    corecore