10 research outputs found

    A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand

    No full text
    A 1.2 m sediment core from Lake Forsyth, Canterbury, New Zealand, records the development of the catchment/lake system over the last 7000 years, and its response to anthropogenic disturbance following European settlement c. 1840 AD. Pollen was used to reconstruct catchment vegetation history, while foraminifera, chironomids, Trichoptera, and the abundance of Pediastrum simplex colonies were used to infer past environmental conditions within the lake. The basal 30 cm of core records the transition of the Lake Forsyth Basin from a tidal embayment to a brackish coastal lake. Timing of closure of the lake mouth could not be accurately determined, but it appears that Lake Forsyth had stabilised as a slightly brackish, oligo-mesotrophic shallow lake by about 500 years BP. Major deforestation occurred on Banks Peninsula between 1860 AD and 1890 AD. This deforestation is marked by the rapid decline in the main canopy trees (Prumnopitys taxifolia (matai) and Podocarpus totara/hallii (totara/mountain totara), an increase in charcoal, and the appearance of grasses. At around 1895 AD, pine appears in the record while a willow (Salix spp.) appears somewhat later. Redundancy analysis (RDA) of the pollen and aquatic species data revealed a significant relationship between regional vegetation and the abundance of aquatic taxa, with the percentage if disturbance pollen explaining most (14.8%) of the constrained variation in the aquatic species data. Principle components analysis (PCA) of aquatic species data revealed that the most significant period of rapid biological change in the lakes history corresponded to the main period of human disturbance in the catchment. Deforestation led to increased sediment and nutrient input into the lake which was accompanied by a major reduction in salinity. These changes are inferred from the appearance and proliferation of freshwater algae (Pediastrum simplex), an increase in abundance and diversity of chironomids, and the abundance of cases and remains from the larvae of the caddisfly, Oecetis unicolor. Eutrophication accompanied by increasing salinity of the lake is inferred from a significant peak and then decline of P. simplex, and a reduction in the abundance and diversity of aquatic invertebrates. The artificial opening of the lake to the Pacific Ocean, which began in the late 1800s, is the likely cause of the recent increase in salinity. An increase in salinity may have also encouraged blooms of the halotolerant and hepatotoxic cyanobacteria Nodularia spumigena

    Shock wave physics and detonation physics – a stimulus for the emergence of numerous new branches in science and engineering

    No full text
    In the period of the Cold War (1945−1991), Shock Wave Physics and Detonation Physics (SWP&DP) – until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) – quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycle and the Research & Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period (from 1808) and further extended in the Post-Classic Period (from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective

    Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    No full text

    Fusion Energy-Production from a Deuterium-Tritium Plasma in the Jet Tokamak

    No full text
    The paper describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixtures. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasma from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 x 10(17) neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 x 10(17) neutrons, with an accuracy of +/- 7%. The actual fusion amplification factor, Q(DT), was about 0.15. With an optimum tritium concentration, this pulse would have produced a fusion power of almost-equal-to 5 MW and a nominal Q(DT) almost-equal-to 0.46. The same extrapolation for the pure deuterium discharge would have given almost-equal-to 11 MW and a nominal Q(DT) = 1.14, so that the total fusion power (neutrons and alpha-particles) would have exceeded the total losses in the equivalent deuterium-tritium discharge in these transient conditions. Techniques for introducing, tracking, monitoring and recovering tritium were demonstrated to be highly effective: essentially all of the tritium introduced into the neutral beam system and, so far, about two thirds of that introduced into the torus have been recovered
    corecore