2,252 research outputs found
Adaptive regulation of membrane lipids and fluidity during thermal acclimation in Tetrahymena
The free-living eukaryotic protozoan Tetrahymena is a potentially useful model for the thermoadaptive membrane regulation because of easy growth in the axenic culture, systematic isolation of subcellular organelles, and quick response to temperature stress. Exposure of Tetrahymena cells to the cold temperature induces marked alterations in the lipid composition and the physical properties (fluidity) of various membranes. The increase in fatty acid unsaturation of membrane phospholipids is required to preserve the proper fluidity. In this homeoviscous adaptive response, acyl-CoA desaturase plays a pivotal role and its activity is regulated by induction of the enzyme via transcriptional activation
Characterizing precursors to stellar clusters with Herschel
Context. Despite their profound effect on the universe, the formation of massive stars and stellar clusters remains elusive. Recent advances in observing facilities and computing power have brought us closer to understanding this formation process. In the past decade, compelling evidence has emerged that suggests infrared dark clouds (IRDCs) may be precursors to stellar clusters. However, the usual method for identifying IRDCs is biased by the requirement that they are seen in absorption against background mid-IR emission, whereas dust continuum observations allow cold, dense pre-stellar-clusters to be identified anywhere. Aims: We aim to understand what dust temperatures and column densities characterize and distinguish IRDCs, to explore the population of dust continuum sources that are not IRDCs, and to roughly characterize the level of star formation activity in these dust continuum sources. Methods: We use Hi-GAL 70 to 500 m bright sources at the warmest. Finally, we identify five candidate IRDC-like sources on the far-side of the Galaxy. These are cold (20 K), high column density (N(H) gt 10 cm) clouds identified with Hi-GAL which, despite bright surrounding mid-IR emission, show little to no absorption at 8 $m. These are the first inner Galaxy far-side candidate IRDCs of which the authors are aware. Herschel in an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation by NASA.The FITS files discussed in the paper would be released publicly WITH the Hi-GAL data (on the Hi-GAL website) when the Hi-GAL data is released publicly.Peer reviewe
Recommended from our members
Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada
The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip
Multibeam Maser Survey of methanol and excited OH in the Magellanic clouds: new detections and maser abundance estimates
‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.12888.xPeer reviewe
Supplementation of Merino ewes with cholecalciferol in late pregnancy improves the vitamin D status of ewes and lambs at birth but is not correlated with an improvement in immune function in lambs
Functional deficiencies of the immune system are known to predispose human and animal neonates to death. Thus, immune competency may be a significant factor influencing the mortality of lambs. Vitamin D has been recognised to improve immune function and is transferred across the placenta. This study tested the hypotheses that (1) supplementation of Merino ewes with cholecalciferol during late pregnancy will increase the concentrations of vitamin D in the ewe and lamb at birth and (2) supplementation of Merino ewes with cholecalciferol during late pregnancy is correlated with an increase in innate phagocytic and adaptive antibody immune responses in the lamb. Merino ewes (n≤53) were injected intramuscularly with 1 × 106 IU cholecalciferol at Days 113 and 141 of pregnancy. A control group (n≤58) consisted of ewes receiving no additional nutritional treatments. The vitamin D status of ewes and lambs was assessed up until 1 month post-lambing. Lamb immune function was assessed by analysing the functional capacity of phagocytes, and the plasma IgG and anti-tetanus-toxoid antibody concentrations between birth and weaning. Maternal supplementation with cholecalciferol increased the plasma 25(OH)D concentrations of both ewes (137 vs 79 nmol/L; P < 0.001) and lambs (49 vs 24 nmol/L; P < 0.001) at birth compared with the controls. Supplementation with cholecalciferol had no significant effect on the phagocytic capacity of monocytes or polymorphonuclear leukocytes, the concentration of IgG in the colostrum or plasma of lambs, or the vaccine-specific antibody response against tetanus toxoid. Overall, the results support our first hypothesis, but suggest that maternal supplementation with 1 × 106 IU cholecalciferol does not improve innate, passive or adaptive immune function in lambs
Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements
Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when the O3 profile is integrated to 10 hPa with subsequent addition of the O3 climatology above 10 hPa. The RS92 radiosondes are superior in performance compared to other radiosondes, with average 26 km errors of -0.12 hPa or +0.61 percent O3MR error. iMet-P radiosondes had average 26 km errors of -1.95 hPa or +8.75 percent O3MR error. Based on our analysis, we suggest that ozonesondes always be coupled with a GPS-enabled radiosonde and that pressure-dependent variables, such as O3MR, be recalculated-reprocessed using the GPS-measured altitude, especially when 26 km pressure offsets exceed 1.0 hPa 5 percent
Selectron Studies at e-e- and e+e- Colliders
Selectrons may be studied in both e-e- and e+e- collisions at future linear
colliders. Relative to e+e-, the e-e- mode benefits from negligible backgrounds
and \beta threshold behavior for identical selectron pair production, but
suffers from luminosity degradation and increased initial state radiation and
beamstrahlung. We include all of these effects and compare the potential for
selectron mass measurements in the two modes. The virtues of the e-e- collider
far outweigh its disadvantages. In particular, the selectron mass may be
measured to 100 MeV with a total integrated luminosity of 1 fb^-1, while more
than 100 fb^-1 is required in e+e- collisions for similar precision.Comment: 16 pages, 11 figure
A novel bifunctional oxygen GDE for alkaline secondary batteries
AbstractThis paper describes a novel procedure for the fabrication of a gas diffusion electrode (GDE) suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated by pre-forming a PTFE-bonded nickel powder layer on a nickel foam substrate followed by deposition of NiCo2O4 spinel electrocatalyst by dip coating in a nitrate solution and thermal decomposition. The carbon-free composition avoids concerns over carbon corrosion at the potentials for oxygen evolution. The electrode shows acceptable overpotentials for both oxygen evolution and oxygen reduction at current densities up to 100mAcm−2. Stable performance during >100 successive, 1h oxygen reduction/evolution cycles at a current density of 20mAcm−2 in 8M NaOH at 333K was achieved
A novel bifunctional oxygen GDE for alkaline secondary batteries
This paper describes a novel procedure for the fabrication of a gas diffusion electrode (GDE) suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated by pre-forming a PTFE-bonded nickel powder layer on a nickel foam substrate followed by deposition of NiCo2O4 spinel electrocatalyst by dip coating in a nitrate solution and thermal decomposition. The carbon-free composition avoids concerns over carbon corrosion at the potentials for oxygen evolution. The electrode shows acceptable overpotentials for both oxygen evolution and oxygen reduction at current densities up to 100 mA cm−2. Stable performance during >100 successive, 1 h oxygen reduction/evolution cycles at a current density of 20 mA cm−2 in 8 M NaOH at 333 K was achieved.European Commissio
- …