50,588 research outputs found
Current-voltage characteristics and vortex dynamics in highly underdoped LaSrCuO
The temperature dependence of the nonlinear current-voltage (-)
characteristics in highly underdoped LaSrCuO ( and
0.08) thick films has been studied in both zero and perpendicular magnetic
fields . Power-law behavior of is found for both and . The critical current was extracted, and its temperature and
magnetic field dependences were studied in detail. The
Berezinskii-Kosterlitz-Thouless physics dominates the nonlinear - near
the superconducting transition at , and it continues to contribute up to a
characteristic temperature . Nonlinear - persists up to an even
higher temperature due to the depinning of vortices.Comment: 4 pages, 4 figures; Superstripes 2015 conferenc
Recommended from our members
On defining partition entropy by inequalities
Partition entropy is the numerical metric of uncertainty within
a partition of a finite set, while conditional entropy measures the degree of
difficulty in predicting a decision partition when a condition partition is
provided. Since two direct methods exist for defining conditional entropy
based on its partition entropy, the inequality postulates of monotonicity,
which conditional entropy satisfies, are actually additional constraints on
its entropy. Thus, in this paper partition entropy is defined as a function
of probability distribution, satisfying all the inequalities of not only partition
entropy itself but also its conditional counterpart. These inequality
postulates formalize the intuitive understandings of uncertainty contained
in partitions of finite sets.We study the relationships between these inequalities,
and reduce the redundancies among them. According to two different
definitions of conditional entropy from its partition entropy, the convenient
and unified checking conditions for any partition entropy are presented, respectively.
These properties generalize and illuminate the common nature
of all partition entropies
Development of an integrated BEM approach for hot fluid structure interaction
A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity
Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction
As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem
Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood
Two distinct halo populations were found in the solar neighborhood by a
series of works. They can be clearly separated by [alpha\Fe] and several other
elemental abundance ratios including [Cu/Fe]. Very recently, a non-local
thermodynamic equilibrium (non-LTE) study revealed that relatively large
departures exist between LTE and non-LTE results in copper abundance analysis.
We aim to derive the copper abundances for the stars from the sample of Nissen
et al (2010) with both LTE and non-LTE calculations. Based on our results, we
study the non-LTE effects of copper and investigate whether the high-alpha
population can still be distinguished from the low-alpha population in the
non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the
high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs.
Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis
method, we derive the non-LTE copper abundances based on the new atomic model
with current atomic data obtained from both laboratory and theoretical
calculations. The copper abundances determined from non-LTE calculations are
increased by 0.01 to 0.2 dex depending on the stellar parameters compared with
the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in
the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into
consideration, the high- and low-alpha stars still show distinguishable copper
abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus
[Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor
stars. Our results confirmed that there are two distinct halo populations in
the solar neighborhood. The dichotomy in copper abundance is a peculiar feature
of each population, suggesting that they formed in different environments and
evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table
Recommended from our members
Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines
A carbon dioxide (CO2) based mixture was investigated as a promising solution to improve system performance and expand the condensation temperature range of a CO2 transcritical Rankine cycle (C-TRC). An experimental study of TRC using CO2/R134a mixtures was performed to recover waste heat of engine coolant and exhaust gas from a heavy-duty diesel engine. The main purpose of this study was to investigate experimentally the effect of the composition ratio of CO2/R134a mixtures on system performance. Four CO2/R134a mixtures with mass composition ratios of 0.85/0.15, 0.7/0.3, 0.6/0.4 and 0.4/0.6 were selected. The high temperature working fluid was expanded through an expansion valve and then no power was produced. Thus, current research focused on the analysis of measured operating parameters and heat exchanger performance. Heat transfer coefficients of various heat exchangers using supercritical CO2/R134a mixtures were provided and discussed. These data may provide useful reference for cycle optimization and heat exchanger design in application of CO2 mixtures. Finally, the potential of power output was estimated numerically. Assuming an expander efficiency of 0.7, the maximum estimations of net power output using CO2/R134a (0.85/0.15), CO2/R134a (0.7/0.3), CO2/R134a (0.6/0.4) and CO2/R134a (0.4/0.6) are 5.07 kW, 5.45 kW, 5.30 kW, and 4.41 kW, respectively. Along with the increase of R134a composition, the estimation of net power output, thermal efficiency and exergy efficiency increased at first and then decreased. CO2/R134a (0.7/0.3) achieved the maximum net power output at a high expansion inlet pressure, while CO2/R134a (0.6/0.4) behaves better at low pressure
Recommended from our members
Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines
This paper presents results of a preliminary experimental study of the Organic Rankine Cycle (ORC) using CO2/R134a mixture based on an expansion valve. The goal of the research was to examine the feasibility and effectiveness of using CO2 mixtures to improve system performance and expand the range of condensation temperature for ORC system. The mixture of CO2/R134a (0.6/0.4) on a mass basis was selected for comparison with pure CO2 in both the preheating ORC (P-ORC) and the preheating regenerative ORC (PR-ORC). Then, the feasibility and application potential of CO2/R134a (0.6/0.4) mixture for waste heat recovery from engines was tested under ambient cooling conditions. Preliminary experimental results using an expansion valve indicate that CO2/R134a (0.6/0.4) mixture exhibits better system performance than pure CO2. For PR-ORC using CO2/R134a (0.6/0.4) mixture, assuming a turbine isentropic efficiency of 0.7, the net power output estimation, thermal efficiency and exergy efficiency reached up to 5.30 kW, 10.14% and 24.34%, respectively. For the fitting value at an expansion inlet pressure of 10 MPa, the net power output estimation, thermal efficiency and exergy efficiency using CO2/R134a (0.6/0.4) mixture achieved increases of 23.3%, 16.4% and 23.7%, respectively, versus results using pure CO2 as the working fluid. Finally, experiments showed that the ORC system using CO2/R134a (0.6/0.4) mixture is capable of operating stably under ambient cooling conditions (25.2–31.5 °C), demonstrating that CO2/R134a mixture can expand the range of condensation temperature and alleviate the low-temperature condensation issue encountered with CO2. Under the ambient cooling source, it is expected that ORC using CO2/R134a (0.6/0.4) mixture will improve the thermal efficiency of a diesel engine by 1.9%
Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars
We study the abundance distributions of a sample of metal-rich barium stars
provided by Pereira et al. (2011) to investigate the s- and r-process
nucleosynthesis in the metal-rich environment. We compared the theoretical
results predicted by a parametric model with the observed abundances of the
metal-rich barium stars. We found that six barium stars have a significant
r-process characteristic, and we divided the barium stars into two groups: the
r-rich barium stars (, [La/Nd]\,) and normal barium stars. The
behavior of the r-rich barium stars seems more like that of the metal-poor
r-rich and CEMP-r/s stars. We suggest that the most possible formation
mechanism for these stars is the s-process pollution, although their abundance
patterns can be fitted very well when the pre-enrichment hypothesis is
included. The fact that we can not explain them well using the s-process
nucleosynthesis alone may be due to our incomplete knowledge on the production
of Nd, Eu, and other relevant elements by the s-process in metal-rich and super
metal-rich environments (see details in Pereira et al. 2011).Comment: 5 pages, 5 figures, accepted for publication in A&
- …