50,588 research outputs found

    Current-voltage characteristics and vortex dynamics in highly underdoped La2−x_{2-x}Srx_{x}CuO4_{4}

    Full text link
    The temperature dependence of the nonlinear current-voltage (II-VV) characteristics in highly underdoped La2−x_{2-x}Srx_{x}CuO4_{4} (x=0.07x=0.07 and 0.08) thick films has been studied in both zero and perpendicular magnetic fields HH. Power-law behavior of V(I)V(I) is found for both H=0H=0 and H≠0H \neq 0. The critical current IcI_{c} was extracted, and its temperature and magnetic field dependences were studied in detail. The Berezinskii-Kosterlitz-Thouless physics dominates the nonlinear II-VV near the superconducting transition at H=0H=0, and it continues to contribute up to a characteristic temperature Tx(H)T_x(H). Nonlinear II-VV persists up to an even higher temperature Th(H)T_{h}(H) due to the depinning of vortices.Comment: 4 pages, 4 figures; Superstripes 2015 conferenc

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity

    Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    Get PDF
    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem

    Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    Full text link
    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2 dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-alpha stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table

    Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars

    Full text link
    We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. We compared the theoretical results predicted by a parametric model with the observed abundances of the metal-rich barium stars. We found that six barium stars have a significant r-process characteristic, and we divided the barium stars into two groups: the r-rich barium stars (Cr>5.0C_r>5.0, [La/Nd]\,<0<0) and normal barium stars. The behavior of the r-rich barium stars seems more like that of the metal-poor r-rich and CEMP-r/s stars. We suggest that the most possible formation mechanism for these stars is the s-process pollution, although their abundance patterns can be fitted very well when the pre-enrichment hypothesis is included. The fact that we can not explain them well using the s-process nucleosynthesis alone may be due to our incomplete knowledge on the production of Nd, Eu, and other relevant elements by the s-process in metal-rich and super metal-rich environments (see details in Pereira et al. 2011).Comment: 5 pages, 5 figures, accepted for publication in A&
    • …
    corecore