105 research outputs found
Day2Dark: Pseudo-Supervised Activity Recognition beyond Silent Daylight
This paper strives to recognize activities in the dark, as well as in the
day. As our first contribution, we establish that state-of-the-art activity
recognizers are effective during the day, but not trustworthy in the dark. The
main causes are the limited availability of labeled dark videos as well as the
distribution shift from the lower color contrast. To compensate for the lack of
labeled dark videos, our second contribution is to introduce a
pseudo-supervised learning scheme, which utilizes unlabeled and task-irrelevant
dark videos to improve an activity recognizer in low light. As the lower color
contrast results in visual information loss, we propose to incorporate the
complementary activity information within audio, which is invariant to
illumination. Since the usefulness of audio and visual features differs
depending on the amount of illumination, we introduce our `darkness-adaptive'
audio-visual recognizer as the third contribution. Experiments on
EPIC-Kitchens, Kinetics-Sound, and Charades demonstrate our proposals are
superior to image enhancement, domain adaptation and alternative audio-visual
fusion methods, and can even improve robustness to occlusions.Comment: Under revie
Learning Unseen Modality Interaction
Multimodal learning assumes all modality combinations of interest are
available during training to learn cross-modal correspondences. In this paper,
we challenge this modality-complete assumption for multimodal learning and
instead strive for generalization to unseen modality combinations during
inference. We pose the problem of unseen modality interaction and introduce a
first solution. It exploits a feature projection module to project the
multidimensional features of different modalities into a common space with rich
information reserved. This allows the information to be accumulated with a
simple summation operation across available modalities. To reduce overfitting
to unreliable modality combinations during training, we further improve the
model learning with pseudo-supervision indicating the reliability of a
modality's prediction. We demonstrate that our approach is effective for
diverse tasks and modalities by evaluating it for multimodal video
classification, robot state regression, and multimedia retrieval.Comment: Under revie
Audio-Adaptive Activity Recognition Across Video Domains
This paper strives for activity recognition under domain shift, for example
caused by change of scenery or camera viewpoint. The leading approaches reduce
the shift in activity appearance by adversarial training and self-supervised
learning. Different from these vision-focused works we leverage activity sounds
for domain adaptation as they have less variance across domains and can
reliably indicate which activities are not happening. We propose an
audio-adaptive encoder and associated learning methods that discriminatively
adjust the visual feature representation as well as addressing shifts in the
semantic distribution. To further eliminate domain-specific features and
include domain-invariant activity sounds for recognition, an audio-infused
recognizer is proposed, which effectively models the cross-modal interaction
across domains. We also introduce the new task of actor shift, with a
corresponding audio-visual dataset, to challenge our method with situations
where the activity appearance changes dramatically. Experiments on this
dataset, EPIC-Kitchens and CharadesEgo show the effectiveness of our approach.Comment: Accepted at CVPR 202
A Trapped Field of 17.6 T in Melt-Processed, Bulk Gd-Ba-Cu-O Reinforced with Shrink-Fit Steel
The ability of large grain, REBaCuO [(RE)BCO; RE =
rare earth] bulk superconductors to trap magnetic field is determined by their
critical current. With high trapped fields, however, bulk samples are subject
to a relatively large Lorentz force, and their performance is limited primarily
by their tensile strength. Consequently, sample reinforcement is the key to
performance improvement in these technologically important materials. In this
work, we report a trapped field of 17.6 T, the largest reported to date, in a
stack of two, silver-doped GdBCO superconducting bulk samples, each of diameter
25 mm, fabricated by top-seeded melt growth (TSMG) and reinforced with
shrink-fit stainless steel. This sample preparation technique has the advantage
of being relatively straightforward and inexpensive to implement and offers the
prospect of easy access to portable, high magnetic fields without any
requirement for a sustaining current source.Comment: Updated submission to reflect licence change to CC-BY. This is the
"author accepted manuscript" and is identical in content to the published
versio
Recommended from our members
A simple, reliable and robust reinforcement method for the fabrication of (RE)–Ba–Cu–O bulk superconductors
Abstract: Bulk high temperature superconductors (HTS) based on the rare-earth barium cuprates [(RE)BCO] have the potential to be applied in a variety of engineering and technological applications such as trapped field magnets, rotating electrical machines, magnetic bearings and flywheel energy storage systems. The key materials figure of merit for most practical applications of bulk superconductors is simply the product of the maximum current density that can be supported, which correlates directly with the maximum achievable trapped magnetic field, and the physical length scale over which the current flows. Unfortunately, however, bulk (RE)BCO superconductors exhibit relatively poor mechanical properties due to their inherent ceramic nature. Consequently, the performance of these materials as trapped field magnets is limited significantly by their tensile strength, rather than critical current and size, given that the relatively large Lorentz forces produced in the generation of large magnetic fields can lead to catastrophic mechanical failure. In the present work, we describe a simple, but effective and reliable reinforcement methodology to enhance the mechanical properties of (RE)BCO bulk superconductors by incorporating hybrid SiC fibres consisting of a tungsten core with SiC cladding within the bulk microstructure. An improvement in tensile strength by up to 40% has been achieved via this process and, significantly, without compromising the superconducting performance of the bulk material
A non-intrusive movie recommendation system
Several recommendation systems have been developed to support the user in choosing an interesting movie from multimedia repositories. The widely utilized collaborative-filtering systems focus on the analysis of user profiles or user ratings of the items. However, these systems decrease their performance at the start-up phase and due to privacy issues, when a user hides most of his personal data. On the other hand, content-based recommendation systems compare movie features to suggest similar multimedia contents; these systems are based on less invasive observations, however they find some difficulties to supply tailored suggestions. In this paper, we propose a plot-based recommendation system, which is based upon an evaluation of similarity among the plot of a video that was watched by the user and a large amount of plots that is stored in a movie database. Since it is independent from the number of user ratings, it is able to propose famous and beloved movies as well as old or unheard movies/programs that are still strongly related to the content of the video the user has watched. We experimented different methodologies to compare natural language descriptions of movies (plots) and evaluated the Latent Semantic Analysis (LSA) to be the superior one in supporting the selection of similar plots. In order to increase the efficiency of LSA, different models have been experimented and in the end, a recommendation system that is able to compare about two hundred thousands movie plots in less than a minute has been developed
Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia
The Jiangmen underground neutrino observatory (JUNO) is a neutrino project
with a 20-kton liquid scintillator detector located at 700-m underground. The
large 20-inch PMTs are one of the crucial components of the JUNO experiment
aiming to precision neutrino measurements with better than 3% energy resolution
at 1 MeV. The excellent energy resolution and a large fiducial volume provide
many exciting opportunities for addressing important topics in neutrino and
astro-particle physics. With the container #D at JUNO Pan-Asia PMT testing and
potting station, the features of waterproof potted 20-inch PMTs were measured
with JUNO 1F3 electronics prototype in waveform and charge, which are valuable
for better understanding on the performance of the waterproof potted PMTs and
the JUNO 1F3 electronics. In this paper, basic features of JUNO 1F3 electronics
prototype run at Pan-Asia will be introduced, followed by an analysis of the
waterproof potted 20-inch PMTs and a comparison with the results from
commercial electronics used by the container #A and #B
NKX2-3 Transcriptional Regulation of Endothelin-1 and VEGF Signaling in Human Intestinal Microvascular Endothelial Cells
BACKGROUND: NKX2-3 is associated with inflammatory bowel disease (IBD). NKX2-3 is expressed in microvascular endothelial cells and the muscularis mucosa of the gastrointestinal tract. Human intestinal microvascular endothelial cells (HIMECs) are actively involved in the pathogenesis of IBD and IBD-associated microvascular dysfunction. To understand the cellular function of NKX2-3 and its potential role underlying IBD pathogenesis, we investigated the genes regulated by NKX2-3 in HIMEC using cDNA microarray. METHODOLOGY/PRINCIPAL FINDINGS: NKX2-3 expression was suppressed by shRNA in two HIMEC lines and gene expression was profiled by cDNA microarray. Pathway Analysis was used to identify gene networks according to biological functions and associated pathways. Validation of microarray and genes expression in intestinal tissues was assessed by RT-PCR. NKX2-3 regulated genes are involved in immune and inflammatory response, cell proliferation and growth, metabolic process, and angiogenesis. Several inflammation and angiogenesis related signaling pathways that play important roles in IBD were regulated by NKX2-3, including endothelin-1 and VEGF-PI3K/AKT-eNOS. Expression levels of NKX2-3, VEGFA, PI3K, AKT, and eNOS are increased in intestinal tissues from IBD patients and expression levels of EDN1 are decreased in intestinal tissues from IBD patients. These results demonstrated the important roles of NKX2-3, VEGF, PI3K, AKT, eNOS, and EDN1 in IBD pathogenesis. Correlation analysis showed a positive correlation between mRNA expression of NKX2-3 and VEGFA and a negative correlation between mRNA expression of NKX2-3 and EDN1 in intestinal tissues from IBD patients. CONCLUSION/RELEVANCE: NKX2-3 may play an important role in IBD pathogenesis by regulating endothelin-1 and VEGF signaling in HIMECs
Validation and integration tests of the JUNO 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. JUNO will be able to study the
neutrino mass ordering and to perform leading measurements detecting
terrestrial and astrophysical neutrinos in a wide energy range, spanning from
200 keV to several GeV. Given the ambitious physics goals of JUNO, the
electronic system has to meet specific tight requirements, and a thorough
characterization is required. The present paper describes the tests performed
on the readout modules to measure their performances.Comment: 20 pages, 13 figure
- …