43 research outputs found

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Controlling nanoslot overlimiting current with the depth of a connecting microchamber

    No full text
    The overlimiting ion flux, in excess of the limiting-value stipulated by diffusion, across a wide nanoslot (of fixed depth) is shown to be sensitively dependent on the depth of the connecting microchamber at one end of the nanoslot, which controls the onset of a vortex instability that specifies the dimension of the concentration polarization layer responsible for overlimiting behavior. Simple scaling arguments relating the microchamber depth to the effective fluid viscosity produce experimentally verified scaling dependence of the polarization layer length, the onset voltage for overlimiting behavior and the overlimiting current on the microchamber depth

    Understanding electrokinetics at the nanoscale: A perspective

    No full text
    Electrokinetics promises to be the microfluidic technique of choice for portable diagnostic chips and for nanofluidic molecular detectors. However, despite two centuries of research, our understanding of ion transport and electro-osmotic flow in and near nanoporous membranes, whose pores are natural nanochannels, remains woefully inadequate. This short exposition reviews the various ion-flux and hydrodynamic anomalies and speculates on their potential applications, particularly in the area of molecular sensing. In the process, we revisit several old disciplines, with some unsolved open questions, and we hope to create a new one
    corecore